第I部門

## 腐食損傷を有する鋼矢板護岸の残存性能に関する研究

| 京都大学工学部      | 学生員 | ○伊藤 | 颯馬 |
|--------------|-----|-----|----|
| 京都大学大学院工学研究科 | 正会員 | 杉浦  | 邦征 |
| 京都大学大学院工学研究科 | 正会員 | 松村  | 政秀 |
| 京都大学大学院工学研究科 | 正会員 | 鈴木  | 康夫 |

# 1. はじめに

海水や河川水などの環境で長期間継続使用されている 鋼矢板護岸の多くには腐食の進行と腐食に伴う断面欠損 による耐荷力減少が認められ,斜面崩壊の災害が発生する 危険性を孕んでいる. 図-1 に示すとおり, 鋼材の腐食速度 は暴露環境によって異なり, 鋼矢板護岸の適切な維持管理 のためには、腐食実態および耐荷力の正確な理解を要する.

本研究では,腐食損傷を有する鋼矢板護岸の耐荷力評価 に向けて、U型鋼矢板を用いた自立式鋼矢板護岸を対象に FEM 解析を実施し、腐食減肉した場合の耐荷力を汎用有 限要素解析コード Abaqus (ver.6.14)を用いて,正確に把握 することを目的としている.

## 2. 解析概要

対象とする U 型鋼矢板(型式 SP-II, 1 枚あたりの幅 400mm)を図-2に示す. 鋼種はJISA 5528 (熱間圧延鋼矢 板)に基づき製作された鋼矢板とし,弾性係数205kN/mm<sup>2</sup>, 降伏応力 295 N/mm<sup>2</sup>, 引張応力 450N/mm<sup>2</sup>, ポアソン比 0.3 を入力する.また,図-2に示すように2枚の鋼矢板を, 継手嵌合を簡略化してモデル化する.設計基準1)に従い, 側辺, 基部等の境界条件は与えていない. 多数の鋼矢板を





図-2 対象鋼矢板断面(寸法単位:mm)

k 160



図-3 対象地盤面(寸法単位:mm)

嵌合させている鋼矢板護岸の挙動を再現するため,部材断 面を決定する際に、中立軸および線対称性を考慮した形状 を採用した.

また,図-3に示す地盤条件および鋼矢板頭部を原点と する座標を想定し, 主働土圧と残留静水圧の和が受動土圧 と等しくなる高さを仮想地盤面と呼ぶ. 主働土圧, 受動土 圧,残留水圧をそれぞれ $\sigma_a$ , $\sigma_p$ , $p_w$ kN/m<sup>2</sup>とする.

| $\sigma_a = 0.291(18z + 10)$ | $(0 \le z < 1.5)$     | (1) |  |
|------------------------------|-----------------------|-----|--|
| $\sigma_a = 2.91(z - 1.5)$   | $(1.5 \le z \le z_0)$ | (1) |  |
| $\sigma_p = 4.807(10z - 3)$  | $(3 \le z \le z_0)$   | (2) |  |
| $p_w = 10.1(z - 1.5)$        | $(1.5 \le z < 2)$     | (2) |  |

$$p_w = 5.05 \qquad (2 \le z \le z_0) \tag{3}$$

Soma Ito, Kunitomo Sugiura, Masahide Matsumura, Yasuo Suzuki ito.soma.45x@st.kyoto-u.ac.jp

式(1)~(3)を用いると、仮想地盤面深さ $z_0 = 3450$ mm と算出 できる.また、仮想地盤面以下、すなわち  $z \ge 3450$ mm で は 455mm 間隔で、ばね剛性 6406.4kN/mを有する地盤ば ねを設定する.ただし、仮想地盤面、鋼矢板底部の地盤ば ねの剛性は 3203.2kN/mとする.さらに、 $0 \le z \le 750$ mm を 海上大気部、 $750 \le z \le 1750$ mm を飛沫帯、 $1750 \le z \le 2250$ mm を干満帯、 $2250 \le z \le 2500$ mm を海中部、 $2500 \le z \le 8000$ mm を海底地中部とし、それぞれの部分で板厚を設定した.板 厚は、鋼管杭の平均腐食速度に基づいて、健全状態(t =10.5mm)から i年(i=10,19,30,40,50)経過後に減肉し た板厚(図-4)を算出し、各部分に設定した.このモデル を Det i モデルとし、健全状態のモデルを Health モデルと する.なお、海上大気部の板厚は飛沫帯と同様とした.

本解析では,設計基準を参考にし,最小要素寸法は8.5mm とし,はり要素を用いた.構成則はバイリニア型を適用し, 載荷荷重は,主働土圧,受動土圧,残留水圧を図-3に示す ように分布載荷する.

### 3. 解析結果 · 考察

それぞれの解析結果をまとめたものを**表-1** に示す. 同 表は,各経年劣化時の頭部変位 $\delta_i$ ,最大曲げ応力度 $\sigma_i$ につ いて,Healthモデル(頭部変位 $\delta_0$ ,最大曲げ応力度 $\sigma_0$ )と の比( $\delta_i/\delta_0, \sigma_i/\sigma_0$ )で示す.応力分布の一例としてHealth, Det-50モデルの解析結果をそれぞれ図-5,6に示す.

表から,健全状態から経過年数が増えると矢板頭部変位 および最大曲げ応力が増加傾向にあることがわかる.特に, Det-50 では曲げ応力が急激に上昇した.各モデルにおいて, 荷重状態に変わりはないため,板厚の腐食減肉により,応 力集中が生じるため,曲げ応力の増加につながったと考え る.また,最大曲げ応力が生じる位置は,Health,Det-10-40 のいずれの場合においても地盤との境界付近 (z=3200mm) であった.一方で,Det-50モデルは,飛沫帯の板厚が健全 時の10%以下となるため,断面が変動する z=1500mm に 応力が集中し,腐食減肉が耐荷力減少に与える影響が顕著 となる.

## 4. まとめ

本研究では、腐食減肉が鋼矢板護岸の残存性能に与える影響を検討するために、FEM 解析を行った.その結果、供用50年で、最大曲げ応力度、応力集中箇所に著しい変化が見

られた.腐食実態は環境に依存するため、対象環境に応じた検討、さらにはモデリングの手法について検討をする必要がある.

表-1 経過年数および頭部変位,最大曲げ応力度

| モデル    | 年数 | 頭部変位 δ<br><sub>i</sub> [mm] | $\delta_i/\delta_0$ | 最大曲げ<br>応力度 σ <sub>i</sub><br>[N/mm <sup>2</sup> ] | $\sigma_i/\sigma_0$ |
|--------|----|-----------------------------|---------------------|----------------------------------------------------|---------------------|
| Health | 0  | 9.79                        | 1.000               | 35.9                                               | 1.000               |
| Det10  | 10 | 10.53                       | 1.075               | 38.3                                               | 1.066               |
| Det19  | 19 | 11.31                       | 1.155               | 40.7                                               | 1.134               |
| Det30  | 30 | 12.50                       | 1.276               | 44.1                                               | 1.228               |
| Det40  | 40 | 14.06                       | 1.436               | 47.8                                               | 1.330               |
| Det50  | 50 | 18.32                       | 1 871               | 1164                                               | 3 240               |





図-5 応力分布図(Health モデル)(単位mN/mm<sup>2</sup>)



図-6 応力分布図(Det 50 モデル)(単位mN/mm<sup>2</sup>)

#### 参考文献

1) 一般社団法人 鋼管杭協会・鋼矢板技術委員会:鋼矢板 施工から設計まで, 2000,3