第 V 部門 スターラップの腐食が RC はりの斜めひび割れ挙動に与える影響

京都大学 学生会員 〇佐藤 貴幸 京都大学 正会員 山本 貴士 正会員 京都大学 高谷 哲 京都大学 正会員 高橋 良和

1. 研究目的

本研究では、スターラップの腐食が RC はりの斜めひ び割れ挙動に与える影響を明らかにすることを目的とし て,スターラップのみを腐食させた RC はりの曲げ載荷 試験をもとに腐食したスターラップの引張力負担ならび に斜めひび割れ拡大抑制効果を検討した.

2. 実験概要

2.1 供試体

供試体の寸法を図1,図2に示す.供試体は,幅×高 さ×スパン長(全長)=100×200×1300mm(1600mm)の RC はりとした. 引張主筋には, 曲げ耐力を向上させ, 引張主 棒(B種1号 SBPR 930/1080)を,後述のスターラップ電食 後に後挿入、無緊張とし、グラウト注入によりボンドタ イプとしたもの用いた. すべての供試体で、表1に示す ように曲げ圧縮破壊先行型となるが、腐食量大の供試体 SS2、SL2 については、曲げ圧縮破壊の開始を若干遅らせ る目的で引張主筋を \$13mm PC 鋼棒(B 種 1 号 SBPR 930/1080)とした. せん断補強筋には D6(SD295A)スターラ ップを用い、コンクリートの水セメント比(W/C)は 60%と した.

2.2 実験要因

150

o23スパイラルシース

150

図 1

100 140 120

3スパイラルシース

竹ひご

竹ひご

100

供試体概要(s_s=80mm)

300

120 100 100 100

た. スターラップの腐食量は、電食による積算電流密度 を調整することにより変化させ、腐食小(182mA*h/cm²)、 腐食大(547mA*h/cm²)の2段階とした.図1,図2に示 すように, s_s=80mm では載荷点の隣から4本, 120mm で は3本のスターラップを、片側のせん断スパンについて 電食対象とした.

2.3 載荷方法および測定項目

載荷は、いずれの試験においてもスパン長 1300mm(全 長 1600mm)に対し、曲げスパン 300mm、せん断スパン 500mm (せん断スパン有効高さ比 a/d=3.76)の対称二点一 方向変位漸増型曲げ載荷とした.

また、最大荷重に達するまで 10kN 毎にひび割れ観察 を行い、斜めひび割れが発生した場合には、供試体側面 に描いた 50mm×50mm メッシュの水平方向格子と斜め ひび割れの交点で、ひび割れ幅をクラックゲージにより 測定した.載荷終了後にスターラップをはつり出し,12 箇所でノギスを用いて測定したスターラップの直径から

公 — 戰內內級加木 見								
			<u> コン/211</u>		実験値		計算値	
供試体番 号No.	鉄筋径	せん断補 強筋間隔 (mm)	ト 圧縮強 度 (N/mm ²)	断面減少 率(%)	最大荷重 (kN)	破壊形式	曲げ終局 荷重(kN) 曲げ圧縮 破壊時	せん断耐 荷力(kN)
SS0	φ17	80	40.6	0.0	69.3	曲げ圧縮 破壊	75.3	96.0
SS1	φ17	80	40.9	11.7	68.7	せん断圧 縮破壊	75.7	88.6
SS2	φ13	80	42.5	31.5	61.8	せん断圧 縮破壊	67.0	71.2
SL0	φ17	120	40.6	0.0	72.1	曲げ圧縮 破壊	75.3	74.8
SL1	φ17	120	31.4	9.9	68.8	曲げ圧縮 破壊	62.1	68.0
SL2	φ13	120	33.0	34.9	64.5	せん断圧	55.9	53.0

o17PC編棒

e17PC编稿

電食対象スターラップ

電会対象スターラップ

スターラップの間隔は s_s=80mm, 120mm の2種類とし

D6 スターラップ

D6スターラップ

図2 供試体概要(s_s=120mm)

500 100 100 80 80 80 80 80 80 100

500

120

図4 載荷後ひび割れ性状

円断面を仮定して断面減少率を算出した.

3. 結果および考察

3.1 載荷試験結果

実験結果を表1に、荷重-変位曲線を図3に示す.表 1のせん断耐荷力の計算値¹⁾は、スターラップの断面積に 腐食による断面減少を考慮して求めた.また、載荷終了 後の破壊およびひび割れ状況を図4に示す.

s_s=80mmの健全供試体(SS0)は,曲げ圧縮破壊を生じた. 腐食供試体(SS1,SS2)は、せん断スパンに斜めひび割 れが発生し、せん断圧縮破壊を生じた.斜めひび割れ発 生はコンクリート強度に依存しているためスターラップ 腐食の影響は考えにくいが、スターラップ周辺の腐食ひ び割れが起点となって斜めひび割れが発生しやすくなっ た可能性がある.図3に示すように、腐食供試体(SS1) では、荷重 60kN 付近からせん断変形が加わったと考え られる変位の増大が若干見られる.

s_s=120mmの健全供試体(SL0),腐食供試体(SL1)では, 曲げ圧縮破壊に至った.腐食供試体(SL1)では,載荷点 下方で,若干斜めひび割れの発生が確認された.腐食供 試体(SL2)では,斜めひび割れが腐食対象のスターラッ プと交差する位置に発生,進展し,最終的にせん断圧縮 破壊を生じた.s_s=80mmの腐食供試体と同様に,スター ラップ周辺の腐食ひび割れが起点となり斜めひび割れが

図 5 SL2 斜めひび割れ幅

発生しやすくなった可能性がある.

3.3 荷重 - 斜めひび割れ幅関係

s=120mmの腐食供試体(SL2)について,荷重増加に伴う斜めひび割れ幅の変化を測定した結果を図5に示す. また,計測したひび割れの位置を図4に示す.

健全側のスパンでスターラップと斜めひび割れが交差 している計測点4のひび割れ幅の挙動は、腐食側の計測 点2および3の増加の傾向と同様であった。今回の腐食 供試体では、腐食によるスターラップとコンクリートの 付着低下が、斜めひび割れ幅の拡大に大きく影響してい ないと考えられる。ただし、閉合スターラップで上下端 の定着部までの距離が小さく、かつ定着が十分であった ため、スターラップのすべりの影響が大きく現れなかっ た可能性がある。また、丸鋼に異形加工したタイプのD6 スターラップであったため、一般的な異形加工の鉄筋に 比べて健全側のスターラップであっても付着が完全でな く、ひび割れ幅の挙動に大きな差が見られなかった可能 性も考えられる。

4. 結論

 せん断スパン内のスターラップが腐食した場合、ス ターラップ周辺の腐食ひび割れが起点となり斜めひび割 れが発生しやすくなる可能性がある.

2) 閉合スターラップ上下端の定着部までの距離が小さ く,丸鋼に異形加工したタイプの D6 スターラップを用 いた今回の腐食供試体では,腐食によるスターラップと コンクリートの付着低下が,斜めひび割れ幅の拡大に大 きく影響しなかった.

参考文献

 土木学会:コンクリート標準示方書(2012 年制定)-設 計編-,2012.