第V部門

京都大学大学院工学研究科	学生員	○加藤	亮平
(株)四国総合研究所	正会員	廣瀬	誠
(株)四国総合研究所	正会員	木村	美紀
京都大学大学院工学研究科	正会員	高谷	哲
京都大学大学院工学研究科	正会員	山本	貴士
京都大学大学院工学研究科	正会員	高橋	良和

1.序論

PC 構造の長寿命化を図るためには, PC 部材の耐荷 力に最も影響を与える PC 鋼材の腐食もしくは破断を 検知し,予防保全を施すことがきわめて重要である. 本研究では,腐食を原因とする PC 鋼材断面欠損の漏 洩磁束法による検知可能性を明らかにすることを目 的とし,鉄筋および PC 鋼材が実 PC 桁と同等に配筋 された場合の漏洩磁束法の適用性について検討した.

2. 実験方法

実 PC 桁模擬の供試体概要を図-1 に示す.供試体は 支間:20.0m,ケーブル数:10本の PC 単純 T 桁を対 象とした.試験対象区間の鋼材配置を図-2 に示す. 供試体は橋軸方向 1.5m を 1 ユニットとし,測定に与 える影響の大きい下フランジのみを再現した.コンク

リートおよびグラウトは非磁性体であるため,打込み は行わず,鉄筋,鋼製シースおよび PC 鋼材のみ配置 した.本実験で使用した材料の一覧を表-1 に,試験 対象鋼材のパラメータを表-2 に示す.試験対象桁の 設計書に定められる PC 鋼材は 12 ¢ 5mmPC 鋼線であ るが,本試験では, ¢ 12.7mmPC 鋼より線を用いた. よって, PC 鋼材量は設計書に定められるよりも少な く,実際よりも厳しい条件での測定である.着磁およ び整磁方法を図-3 に示す.本実験では,桁底面から 磁束密度分布の測定を行うことを想定し,図-4 に示 す断面寸法で底面から着磁,整磁および磁束密度分布 の測定を行った.

3. 実験結果および考察

まず, 表-2の PC 鋼より線を試験室内に単独で配置 し, 測定かぶり 10, 15cm で磁束密度分布を測定した

結果を図-5 に示す. なお, 本測定の着磁および整磁 は,測定かぶり位置で着磁 後,水平に 15cm および 30cm ずらした位置で整磁 を行った.供試体の鋼材

表-1 使用材料一覧								
種別	仕	様						
PC鋼材	φ1	o12.7 7本よりPC鋼より線			SWPR7BN			
シース φ35 鋼製スパイラルシース								
主鉄筋	D1	13 異形棒鋼			SD295A			
スターラッ	スターラップ D10 異形棒鋼				SD295A			
表-2 パラメーター覧								
名称	ΔE	府合巨	積算	最小	断面	素線		
	土衣	腐良女	電流量	直径	減少率	破断		
	[mm]	[mm]	[A•h]	[mm]	[%]	[本]		
健全		-	-	12.7	0	-		
腐食	1500	200	276	8.37	34.1	2		
完全破断		グラインダーで完全破断(破断Gap:4cm)						

Ryohei KATO, Makoto HIROSE, Miki KIMURA, Satoshi TAKAYA, Takashi YAMAMOTO, and Yoshikazu TAKAHASHI kato.ryohei.44u@kyoto-u.jp

配置および破断位置を図-6 に,測定方法を図-7 に示 す.対象鋼材を健全もしくは腐食鋼材として,底面か ぶり側から磁束密度分布の測定を行った.また,図-7 に示す対象鋼材の破断検知において,スターラップの 影響について検討を行うため,図-8,9のように完全 破断鋼材とスターラップを配置し,磁束密度の測定を 行った.

測定結果を図-10 に示す.腐食で断面が 30%以上欠 損した鋼材においても明確な S 字波形は表れなかっ た.周辺の PC 鋼材および主鉄筋の着磁端による成分 が大きく,測定位置上の磁束密度分布に S 字波形が 表れにくくなったと考えられる.

スターラップ間に破断部を設けた測定では破断部 に明確な S 字波形が確認できる.スターラップの背 後で PC 鋼材を破断させた場合は S字を示す傾向はあ るものの明確な S 字波形は確認できない.スターラ ップと破断部の距離が近いことによりスターラップ の磁気遮蔽効果が大きくなったと考えられる.ただし, 本試験の PC 鋼材量は実際よりも少なく,着磁距離も

望ましいとされる 4m 以上には満たない.よって,実際の PC 桁では,本試験よりも明確な S 字波形が表れることも考えられる.

図-11 に示すように下から2段目に完全破断鋼材を 配置して磁束密度分布の測定を行った結果を図-12に 示す.図-12より,破断位置にS字波形は確認されな い.周囲のPC鋼材および鉄筋,特に前面の健全鋼材 により破断部の影響が遮蔽されたものと考えられる.

4. 結論

腐食による断面欠損を漏洩磁束法により検知でき ることを示した.ただし,対象鋼材周辺に鉄筋もしく は PC 鋼材が存在する場合,対象鋼材からの漏洩磁束 が周辺の鋼材に遮蔽され,断面欠損を示す S 字波形 が測定位置に表れにくくなる可能性が見出された.

