第Ⅱ部門

流水階段の登段シミュレーション

京都大学工学研究科 学生会員 居村 光端 京都大学工学研究科 正会員 原田 英洋 京都大学工学研究科 正会員 五十里 洋谷	学生会員 〇春名	慧
京都大学工学研究科 正会員 原田 英洋 京都大学工学研究科 正会員 五十里 洋谷	科学生会員 居村光	孝
京都大学工学研究科 正会員 五十里 洋谷	科 正会員 原田 英	治
	科 正会員 五十里 洋	行
京都大学工学研究科 正会員 後藤 仁君	科 正会員 後藤 仁	志

1. はじめに

浸水条件の避難過程では,避難者に作用する流体力の 評価が不可欠である.本研究では流れ場の解析に MPS 法 を導入することで,流れ場と避難者の相互作用を考慮し た Two-way カップリングへの改良を行い,既往の実験と の比較によりモデルの妥当性を確認した.

2. 数値計算モデル

2-1 流体解析手法

大変形を伴う自由水表面にも柔軟に対応できる MPS 法(Moving Particles Semi-implicit Method)を用いる.本研究 では,高精度粒子法として MPS-HS-HL-ECS-GC-DS 法¹⁾²⁾ を用いて計算を行った.

以下に流体の支配方程式の Navier-Stokes 式を示す.

$$\rho \frac{D\boldsymbol{u}}{Dt} = -\nabla p + \mu \nabla^2 \boldsymbol{u} + \rho \boldsymbol{g} - \boldsymbol{f}_h \tag{1}$$

ここに、 ρ :水の密度、t:時間、u:流速ベクトル、p: 圧力、 μ :粘性係数、 f_h :避難者要素から受ける力のベクトルである.

2-2 群集行動シミュレータ

個別要素法型群集行動シミュレータを用いる. 避難者 要素 *i* の挙動は, Gotoh et al.³⁾を参考にして記述し, 並進 の運動方程式は次式で与える.

$$M_{hi}\frac{d\boldsymbol{v}_i}{dt} = \boldsymbol{F}_{hint} + \boldsymbol{F}_{aw} + \boldsymbol{F}_k + \boldsymbol{F}_{li}$$
(2)

ここに、 M_{hi} : 避難者要素 i (シリンダー形状を仮定) の質量、 v_i : 歩行速度、 F_{hint} : 要素間の作用力、 F_{aw} : 自律歩行力、 F_k : 避難者要素間の追従・回避力、 F_{li} : 流 体力である.

本研究では、従前の抗力型の表式による One-way カッ プリングに対し、流体解析に MPS 法、群集避難に DEM 型シミュレータを用いて、Two-way カップリングへの改 良を行った.登段者要素を模擬した円柱周りの粒子によ る応力を面積分する三次元流体解析を実施している.

$$\boldsymbol{F}_{li} = \int_{V} \nabla \cdot \boldsymbol{\sigma} dV \tag{3}$$

ここに, σ : 流体応力, V: 円柱の体積である.式(1)中の f_h については,式(3)中の F_{li} を用いて,数値シミュレーションでは

$$\boldsymbol{f}_{h} = \frac{1}{\pi \left(\frac{d_{i}}{2}\right)^{2}} \sum_{i} \boldsymbol{F}_{li} \boldsymbol{\varphi}_{whi} \tag{4}$$

と算出される. ここに, φ_{whi} :影響円内のi番目の避難者 要素の占有率である.

浸水した階段の登段歩行過程シミュレーション
 計算条件とシミュレーション結果

馬場ら⁴による浸水地下空間からの避難実験で用いら れた実物大模型と同様のスケールで3次元数値シミュレ ーションを実施した.流体力の評価にTwo-way カップリ ングモデルを用い,実験との比較を行った.

計算領域には、高水槽とそれに続く地上平坦部が、地 階の平坦部と階段で接続されている装置を用いる.地階 平坦部は5.0mで、階段は、幅1.0m、踏板長さ0.3m、蹴 上げ0.15mの20段で構成され、地階と地上階の高低差 は3.0mである.高水槽底面を流入境界、地階平坦部下流 端を流出境界としている.なお、粒径は5.0cmである. 登段者要素は MPS 法における壁粒子を重なりを許さず 組み合わせた、直径0.379mの円柱により表現する.

シミュレーションは、高水槽平坦部での水深をHとし、 H=0.1, 0.2, 0.3, 0.4mの4ケースを実施した.はじめに、 登段者を配置しない条件で通水し、流況が平衡状態であ ることを確認した.実験⁵では階段状の流速を、テニス ボールをトレーサーとした可視化法を用いて計測して いる.流況の再現性を確認するため、本研究では、粒径 5.0cm、比重 0.38のトレーサー粒子を用いて流速を計測 した.図-1に流速分布の比較を示す.実験と比較して、 H=0.1,0.2mの条件では階段最上端から 6.0 から 7.0mの 領域で流速の落ち込みが見られたが、全体としては概ね 良好な再現結果が得られた.

Satoshi HARUNA, Mitsutaka IMURA, Eiji HARADA, Hiroyuki IKARI and Hitoshi GOTOH Haruna.satoshi.64x@st.kyoto-u.ac.jp

図-1 流速分布の実験値5(左),シミュレーション値(右)

表-1	各ケー	-スの登段完了時間	
~ ~ -	H /		-

水深H(m)	実験値(s)	シミュレーション値(s)
0.1	14.89	18.36
0.2	16.64	×
0.3	17.99	×
0.4	20.73	×

馬場らの実験と同様,登段者が初速ゼロで歩行開始後, 階段最上端までの到達時間を登段完了時間とし,表-1に 各水深Hに対する登段完了時間の比較を示す.シミュレ ーション結果は実験と比較して登段完了に長時間を要 することが分かり,H=0.2,0.3,0.4mの条件では登段完了 しなかった.これは、シミュレーションのモデル化の不 備が原因であると考えられる.例えば、登段者を円柱に 置き換えたことによる幾何学的形状の相違や、歩行運動 に関する姿勢の変化を並進運動で単純化したことが挙 げられる.これらが、実験と比較して登段者に作用する 流体力が過大評価となった一因として考えられる.

3-2 既往の実験の再現

本シミュレーションのモデル化の不備を補うため、不 備に関連する一括した力を補正項Aとしてx軸方向の運 動方程式に導入し、式(2)を以下のように変更する.

$$M_{hi}\frac{du_i}{dt} = F_{xhint} + F_{xaw} + F_{xk} + F_{xli} + A$$

$$A = -\alpha F_{xli}, \quad 0 \le \alpha < 1$$
(5)

ここに, α:補正係数である. 馬場らの実験結果を良好 に再現するように,各水深 H の条件に対して補正係数α を調整したところ,表-2 に示す結果が得られた.また, 登段過程の代表的なスナップショットを図-2 に示す.

3-3 補正係数の推定方法

前節で決定した補正係数 α は、高水槽平坦部の水深Hと 登段者が通過する領域の平均流速 u_{ave} に依存する関数 $f: \alpha = f(H, u_{ave})$ で与えられる。補正項Aを他領域の 計算に用いるには α の推定が不可欠であるが、参照でき る情報は異なる4つの制御点に限定されているため、 その正確な推定は困難である。そこで本研究では、4つ

図-2 Autodesk MAYA[®]によるスナップショット

表-2 実験値との比較

水深H(m)	u _{ave} (m/s)	α	$F_{xli,ave}(N)$	実験値(s)	with A(s)
0.1	0.73	0.19	-73.8	14.89	14.80
0.2	1.13	0.52	-152.6	16.64	16.70
0.3	2.28	0.57	-233.9	17.99	17.86
0.4	2.65	0.661	-310.1	20.73	20.81

の制御点から得られる4つの平面方程式それぞれに任意 のH及びu_{ave}を与えることで導出されるαの平均値を, αの推定値として用いることとした.これにより他領域 における流水階段の登段シミュレーションを実施可能 とした.

4. おわりに

流体力評価に Two-way カップリングモデルを導入し, 既往の実験結果と比較した.実験結果との乖離の原因と なったモデル化の不備による力について考察し,そのモ デル化を推進した.

参考文献

- A.Khayyer and H.Gotoh: Enhancement of stability and accuracy of the moving particle semi-implicit method, *Journal of Computational Physics.*, Vol.230, pp.3093-3118,2011.
- N.Tsuruta, A.Khayyer and H.Gotoh: A short note on Dynamic Stabilization of Moving Particle Semi-implicit method, *Computers & Fluids*, Vol.82, pp.158-164,2013.
- H.Gotoh, E.Harada, E,Andoh: Simulation of pedestrian contra-flow by multi-agent DEM model with self-evasive action model, *Safety Science*, Vol.50, issue 2, pp.326-332,2012.
- 馬場康之,石垣泰輔,戸田圭一,中川一:実物大模型を用いた地下浸水時の避難困難度に関する実験的研究,土木学会論文集F2(地下空間研究), Vol.67,No.1,12-27,2011.
- 5) 石垣泰輔,戸田圭一,馬場康之,井上和也,中川 ー:実物大模型を用いた地下空間からの避難に関す る実験的検討,水工学論文集,No.50,2006.