第V部門

ASR と鋼材腐食による複合劣化を生じた

RC はり部材のせん断耐荷特性に関する研究

大阪工業大学工学部 学生員 〇的場 良太 大阪工業大学工学部 正会員 三方 康弘 大阪工業大学工学部 正会員 井上 晋

## <u>1.研究目的</u>

近年,コンクリート構造物に対する高耐久化や長 寿命化が望まれており,塩害,ASR,中性化など単 独による劣化現象の研究は多くされているが,複合 劣化の研究は未だ少ないのが現状である.このよう な背景から,ASR と鋼材腐食の複合劣化が RC はり 部材のせん断耐荷特性に及ぼす影響について検討す ることを目的とした.さらに,複合劣化が鉄筋とコ ンクリートの付着特性に及ぼす影響を把握するため に,付着供試体により引抜き試験を行った.また, せん断補強筋の定着不良がせん断耐荷特性に及ぼす 影響を検討するためにせん断補強筋の破断を想定し た供試体を併せて作製した.

#### <u>2.実験要因</u>

コンクリートの種類は健全(N), ASR(A), 複合劣化 (AC)の3種類を選定した. せん断補強筋(拘束筋)は破 断無し,破断有りの2種類を選定した. はり供試体 は計6体,付着供試体は計18本作製した. はり供試 体は,幅×高さ=100×200mmの単鉄筋長方形断面を有 する全長1400mmのRC単純はり部材(コンクリート の設計基準強度:f'=24N/mm<sup>2</sup>)を作製した. 全ての供 試体の主鉄筋にはD19(SD345A), せん断補補強筋に はD6(SD346A)を使用した. 載荷方法は a/d=2.35 とし た対称2点集中荷重方式とし,曲げスパン 300mm, せん断スパン 400mm とした. なお,付着供試体は, はり供試体と同一の断面(100×200mm)を有し,全長 150mm とし,拘束筋による拘束効果が付着応力度– すべり関係に及ぼす影響を把握することを目的とし ている.

### 3.付着供試体の引抜き試験

引抜き試験の治具を図-1,供試体の断面を図-2,各 供試体の破壊形式と付着応力度を表-1に示す.Nシ

Ryota MATOBA, Yasuhiro MIKATA, Susumu INOUE concrete\_laboratory\_oit@yahoo.co.jp







表-1 最大付着応力度

| 供試体<br>(作製年次)     | シリーズ         | 最大荷重(KN) | τ <sub>max</sub> (N/mm²) | 平均値  | 破壊形式       |
|-------------------|--------------|----------|--------------------------|------|------------|
| N-1<br>(2014)     | N<br>(健全)    | 49.36    | 49.36 5.48               |      |            |
|                   |              | 47.63    | 5.29                     | 5.30 | -<br>- 抜出し |
|                   |              | 46.26    | 5.14                     |      |            |
| N-1-破断<br>(2014)  |              | 42.29    | 4.70                     |      |            |
|                   |              | 61.97    | 6.89                     | 4.45 |            |
|                   |              | 51.04    | 5.67                     |      |            |
| A-1<br>(2014)     | A<br>(ASR)   | 24.90    | 2.77                     |      |            |
|                   |              | 24.59    | 2.73                     | 3.34 |            |
|                   |              | 40.55    | 4.51                     |      |            |
| A-1-破断<br>(2014)  |              | 24.46    | 2.72                     |      |            |
|                   |              | 20.49    | 2.28                     | 2.17 |            |
|                   |              | 13.66    | 1.51                     |      |            |
| AC-1<br>(2014)    | AC<br>(複合劣化) | 49.92    | 5.55                     |      |            |
|                   |              | 51.35    | 5.71                     | 5.43 |            |
|                   |              | 45.39    | 5.04                     |      |            |
| AC-1-破断<br>(2014) |              | 28.50    | 3.17                     |      |            |
|                   |              | 33.53    | 3.73                     | 4.72 |            |
|                   |              | 65.32    | 7.26                     |      |            |

リーズ供試体と AC シリーズ供試体を比較すると, 拘束筋が破断していない AC-1 はケミカルプレスト レスの影響により, N-1 と比較して付着応力度の平 均値が大きくなった.一方,拘束筋が破断を想定し た AC-1-破断は拘束効果が小さいことから,ケミカ ルプレストレスの影響が小さくなり, N-1-破断と比 較して付着応力度平均値が小さくなった.また,A シリーズ供試体はコンクリート強度が低くなったた め,付着応力度が小さくなった.

### 4.はり供試体

各供試体の最大荷重,曲げ破壊荷重計算値,破壊 形式を表-2, 載荷試験後のひび割れ状況を図-3, 荷重 -中央変位関係を図-4 に示す. すべての供試体にお いて実測値が計算値を上回る結果となった. N-1 供 試体はせん断ひび割れ発生後にせん断ひび割れ上部 の圧縮部のコンクリートで荷重に抵抗し、最終的に 圧縮部のコンクリートが圧壊し, せん断圧縮破壊に 至った.また、N-1-破断供試体はせん断ひび割れ発 生後に圧縮斜材で荷重に抵抗していたものの, 最終 的にせん断補強筋の破断位置に割裂ひび割れが発生 し, せん断引張破壊に至った. 一方, A-1, A-1-破断, AC-1, AC-1-破断供試体は, 図-4 に示すようにせん 断ひび割れ発生後に急激に荷重低下を生じた. これ は ASR によるひび割れの影響により、コンクリート による圧縮斜材の形成に影響を及ぼしたものと考え られる.

### <u>4.まとめ</u>

付着供試体の試験結果から,拘束筋が破断を想定 した場合には拘束効果が小さいことから,ケミカル プレストレスの影響が小さくなり,付着応力度が低 下した.はり供試体の結果から,ASR を生じた供試 体はせん断ひび割れ発生後に急激に荷重低下を生じ た.これはASR によるひび割れの影響により,コン クリートによる圧縮斜材の形成に影響を及ぼしたも のと考えられる.

# <u>謝辞</u>

本研究は科学研究費補助金(基盤研究(C),課題番号:26420442)により実施した.ここに謝意を表します.

### 表-2 はり供試体の載荷試験結果

| 名称      | 最大荷重<br>Pu<br>(kN) | ※曲げ<br>破壊荷重<br>計算値<br>Pub | <sup>※</sup> せん断<br>破壊荷重<br>計算値<br>2Vy | <sup>**</sup> せん <b>断耐</b> 力<br><b>計算値</b><br>(kN) |      |      | 破壞形式        |
|---------|--------------------|---------------------------|----------------------------------------|----------------------------------------------------|------|------|-------------|
|         |                    | (kN)                      | (kN)                                   | Vy                                                 | Vs   | Vc   |             |
| N-1     | 159                | 104.9                     | 100.0                                  | 50.0                                               | 29.7 | 20.3 | せん断圧縮<br>破壊 |
| N-1-破断  | 166                | 104.9                     | 100.0                                  | 50.0                                               | 29.7 | 20.3 | せん断引張<br>破壊 |
| A-1     | 118                | 79.0                      | 95.8                                   | 47.9                                               | 29.7 | 18.2 | 斜め引張<br>破壊  |
| A-1-破断  | 112                | 79.0                      | 95.8                                   | 47.9                                               | 29.7 | 18.2 | 斜め引張<br>破壊  |
| AC-1    | 146                | 106.5                     | 100.4                                  | 50.2                                               | 29.7 | 20.5 | 斜め引張<br>破壊  |
| AC-1-破断 | 118                | 106.5                     | 100.4                                  | 50.2                                               | 29.7 | 20.5 | 斜め引張<br>破壊  |

※実材料強度を用いて、ファイバー法により曲げ破 壊荷重、土木学会のせん断耐力算定式によりせん断 破壊荷重を算定した.鉄筋の降伏強度の算定に用い る鉄筋の断面積は公称断面積を用いた.



図-3 載荷試験後のひび割れ状況



図-4 荷重-中央変位関係