第Ⅲ部門

立命館大学	学生会員	〇山戸	貴嗣
立命館大学	学生会員	大矢	綾香
立命館大学	学生会員	飯田	1 悟

<u>1. はじめに</u>

ベトナム・ホーチミン市を流れるサイゴン川の流域 では,近年,河岸斜面の崩壊により付近の家屋や構造物 に甚大な被害が生じている.現在は,コンクリート等で 順次護岸対策がなされているが,対象とする河岸の延 長距離が長いため,効果的で経済的な対策が求められ ている.

本研究では,現地発生材をイメージして構成された 改良土の三軸圧縮試験を行い,力学特性と強度定数を 求めた.また,得られた強度定数を用いて,数値シミュ レーションを行い,軟弱地盤に対する地盤対策工の効 果を検証した.

2. 改良土の三軸圧縮試験

改良土の配合比を表1に示す.本研究では,まず籾殻 灰の強度と破壊ひずみに及ぼす影響を調べるために, 試験1と試験2を行った.その後,強度を上げるため に生石灰の配合量を増やした試験3を行った.ここで, 強度を大幅に上げることに成功したが,破壊ひずみが 著しく低下したため,さらに改善するために稲わらを 加えた試験4を行った.三軸圧縮試験としてはCU試 験を実施させた.試験1から4の圧密圧力を表2に示 す.また一例として試験4に対する応力-ひずみ曲線 と有効応力経路図を図2,図3にそれぞれ示す.

三軸圧縮試験の結果より,試験1と試験2,試験4 のいずれにおいても,なだらかに増加していき,試験 終了条件である圧縮ひずみ15%を超えても降伏点を確 認することができなかった.試験3は主応力差が最も 大きい結果となったが,破壊ひずみが著しく低いとい う結果となった.そのため脆性破壊を引き起こしてい ると考えられる.その試験3の配合比に稲わらを加え た試験4は4つの試験の中で最もバランスのとれた結 果となり,生石灰と稲わらによって強度が増加してい ることを示している.

立命館大学	正会員	藤本	将光
立命館大学	フェロー	深川	良一

表1 配合条件

\leq	籾殻灰(%)	生石灰(%)	藤森粘土(%)	含水比(%)	稲わら(%)
試験1	10	4	100	55	—
試験2	5	4	100	55	—
試験3	10	5	100	55	—
試験4	10	5	100	55	1

表2 CU 試験における圧密圧力

	試験1			試験2,3,4		
圧密圧力σ _c (kN/m ²)	35	100	165	50	100	150
					-	

<u>3. FEM による解析について</u>

本研究では FEM(PLAXIS)¹⁾を用い,現地の地盤をモ デル化し,地盤改良の効果を検証した.構成則は弾完 全塑性,降伏基準は Mohr-Coulomb モデルとし,せん 断強度低減法により安全率を推定した.また,今回 は,静水圧分布で解析を行うため,水の流れの影響を 考慮しないこととする.モデル斜面を**図4**に,解析パ

Takashi YAMATO, Ayaka OYA, Satoru IIDA, Masamitsu FUJIMOTO, Ryoichi FUKAGAWA rd0040vv@ed.ritsumei.ac.jp

ラメータを**表3**にそれぞれ示す.解析パラメータは現 地調査と改良土の三軸圧縮試験に基づき設定した.

解析は、施工過程に追従するように実施した. すなわ ち、図5に示すように第1層を4m,6m,8m,10mと 徐々に大きくしていきながら30°に切り取る.その後、 切り取った斜面と同等の厚さの改良土を被せるように 覆い、改良斜面の安全率の変化を検討する.斜面を切り 取る角度は、モデル斜面に近い形で改良するため30° とした.改良による安全率の変化を表4に示す.

表3 解析パラメータ

パラメータ	第1層	第2層	第3層	試験1	試験2	試験3	試験4
湿潤単位体積重量 γ_t (kN/m ²)	14.7	20.7	20.7	15.778	15.876	16.17	15.778
飽和単位体積重量γ _{sat} (kN/m ²)	15.7	20.7	21.1	16.003	15.983	16.23	15.943
ヤング係数E (MN/m ²)	36.3	64.4	64.4	5.962	4.021	18.077	28.197
ポアソン比	0.35	0.35	0.35	0.35	0.35	0.35	0.35
粘着力c' (kN/m ²)	10.8	36.3	9.81	10.909	7.297	1.5361	17.879
内部摩擦角 \((deg)	4.38	15.7	28.1	31.839	32.213	35.715	33.877
ダイレイタンシー角ψ(deg)	0	0	0	0	0	0	0

表 4 安全率	≤の変化
---------	------

		改良範囲(m)				
		4	6	8	10	
	試験1	0.991	1.012	1.038	1.070	
中全家	試験2	崩壊	崩壊	0.984	1.015	
女主卒	試験3	崩壊				
	試験4	1.053	1.100	1.148	1.199	

ちなみに,改良する前の安全率は1.047となった.また,試験4の変位の解析結果を図6に示す.

解析結果より,改良前に比べると試験4で少しであ るが安全率が上昇した. また試験2の一部と試験3の 全てのパターンにおいて改良を行った際に自立するこ とができず,重力載荷の段階で崩壊した.解析パラメー タに着目すると,三軸圧縮試験で得られた内部摩擦角 は4つの試験とも大きな差は見られなかったが,粘着 力には差が見られた.そのため,粘着力の低い試験2と 試験3が崩壊していることから,今回の解析結果は粘 着力に,より依存していると考えられる.

<u>4. おわりに</u>

本研究では、改良土の三軸圧縮試験により強度定数 を求め、実地盤に適用した際の改良効果の検証を行っ た.しかし、現地で適用するには実際の河川の流れや水 位変動等を考慮しなければならない.今後は、改良土の 乾湿繰り返し試験や、さらに実地盤を意識した解析を 行っていきたい.

<u>参考文献</u>

1) Plaxis : Plaxis 2D Reference manual.