第I部門

改良版個別要素法を用いた無筋コンクリート橋脚の振動台実験の再現解析

京都大学工学部 学生員 〇好川 浩輝 京都大学大学院 正会員 古川 愛子 京都大学大学院 正会員 清野 純史

1. 研究の背景と目的

全国の在来鉄道において、地震による無筋コンク リート橋脚の被害が発生している.典型的な被害形態 は、打継目における水平ずれと打継目下側コンクリー ト端部の剥落である.被災メカニズムを解明し、適切 な対策を施すには、実験と解析の両面からのアプロー チが必要である.2015年1月に、西日本旅客鉄道(株) によって振動台実験が実施され、実験面からの検討が 行われた.しかし、無筋コンクリート橋脚に適した数 値解析手法は確立されておらず、解析面からの検討は 不十分である.そこで本研究では、離散体の解析手法 である改良版個別要素法¹⁾用いて振動台実験の再現解 析を行い、手法の適用性を検証することを目的とした.

2. 改良版個別要素法

個別要素法では、構造物を剛体要素の集合体とモ デル化し、接触要素間にばねとダッシュポットを配置 し相互作用を表現する.改良版個別要素法では、要素 表面をセグメントに分割し各セグメントにばね等を設 置(図1左)することで、理論的にばね定数を決定す ることが可能になった¹⁾.従来の手法では、図1中の ように分割し、頂点、辺、面にばね等を設置していた.

3. 振動台実験の再現解析

3.1 供試体および解析モデル

図 2 左に供試体,右に解析モデルを示す.フーチ ングは幅 2.29m,奥行き 1.5m,高さ 0.6m,橋脚は幅 1.45m,奥行き 0.66m,高さ 1.65m で 0.4m の高さに打 継目を有する.橋脚は幅 0.79m,奥行き 0.66m の長方 形の両側に直径 0.66m の半円柱がついた形状である. 半円柱部分を直方体を組み合わせて表現した.要素サ イズは箇所によって異なるが,破壊が生じる部分は幅 5.5cm×高さ 9cm とした.鋼製錘は幅 0.6m,奥行き 0.45m,高さ 0.525m である.入力地震動は x 方向のみ であるから,y 方向の要素分割は行わなかった.

解析に用いた材料特性は供試体の要素試験結果に 基づき設定した²⁾. コンクリートの密度 2.3×10³kg/m²,

Hiroki YOSHIKAWA, Aiko FURUKAWA and Junji KIYONO yoshikawa.hiroki.88r@st.kyoto-u.ac.jp

ヤング率 2.2×10¹⁰N/m², ポアソン比 0.2, 圧縮強度 2.784×10⁷N/m², 引張強度とせん断強度は圧縮強度の 1/10, 1/4 とした. 鋼製錘は質量 810kg, ヤング率 2.0 ×10¹¹N/m², ポアソン比 0.3 とした. 減衰定数は, 打 継目以外は臨界減衰の 1.0, 打継目はロッキングを生じ たことから 0.0 とした. 打継目は表面加工され平坦であ ることから, 引張強度は 0 とし, 摩擦係数は試験結果²⁾ である静止摩擦係数 0.66, 動摩擦係数 0.64 を採用した.

3.2 入力地震動

振動台実験では,鉄道構造物等設計標準³の L2 地震 動スペクトル II (G2) の地表面地震動を振幅調整し た波形に相似則を適用したものが用いられた. 解析で は,打継目の水平ずれが生じた最大加速度 600,700, 800,1000,1200gal の5 ケースを対象とし,振動台上 で計測された加速度波形³の特に振幅の大きい3 秒間 を入力した.

3.3 摩擦特性の再現性における問題点と改善策

従来の改良版個別要素法を用いて振動台実験の再 現解析を試みたところ,要素分割数が増えるにつれて, 打継目の水平ずれは生じにくく,破壊は起こりやすく なる傾向が確認された.原因は要素間の引っ掛かりで あることがわかった.図3の上下の2つの要素はそれ ぞれ,打継目上側と下側の要素を表す.個々の要素は

図 1 要素表面のばね設置の様子とばね設置点(黒点)(左:ばね設置の様子,中:従来,右:提案)

剛体で変形しないが要素同士が重なり合うことによっ て変形を表現している.上下の要素間に自重による重 なり合いが生じている状態で、上の要素に水平力を右 向きに作用させると、左上と右下の要素間には実際に は存在しない圧縮力が発生する.この圧縮力が、水平 ずれを生じにくく、破壊を生じやすくする原因である ことがわかった.本研究では改善策として、図1右に 示す、要素の面のみに設置するばねモデルを提案する. これにより左上と右下の要素間に圧縮力は発生しなく なり、所望の摩擦係数を再現できることを確認した.

3.4 破壊領域の再現性における問題点と改善策

打継目下側端部が図 4 のように回転しながら破壊 する際,打継目上側の要素を持ち上げ,打継目上側が 両端の2点で支持される状況が生じることがわかった. この状態で水平ずれが継続すると,反対側の端部にお いて大きな摩擦力が作用することになり,打継目上側 コンクリートが破壊する現象が確認された.本研究で は,上側要素の持ち上がりを抑制するため,要素に加 わる圧縮応力に上限を定められるように改良を行った. ここでは,圧縮応力の上限値を圧縮強度の 1/40 と仮 定した.上限値は打継目上部の持ち上がりが極力抑え られ,かつ打継目上部の自重を支えられる値とした.

3.5 振動台実験の再現結果

800gal 以下のケースでは、振動台実験ではコンクリートの破壊はほとんど生じなかった. 解析でも打継目で滑るだけで破壊は生じなかった. 図5に打継目の水平ずれの時刻歴波形を示す.赤線が解析、青線が実験結果である.700gal の結果は省略するが、600~800gal では、水平ずれを良好な精度で再現できた.

一方,1000gal 以上のケースでは,振動台実験でも 解析でもコンクリートに破壊が生じた.図6に加振後 の様子を示す.実験では,打継目下側のみに破壊が生 じた.図5(c)(d)より,破壊の生じた1000,1200galの ケースでは水平ずれの再現性は高くない.また図6(a) より,実験に比べて解析の破壊領域は狭いが,打継目 の下側だけが破壊する様子は再現することができた.

しかし 1200gal のケースでは, x 軸負側において打継 目上側コンクリートの破壊が生じた(図 6(b)).この 原因は,図4で説明したメカニズムの通りである.圧 縮応力に上限値を持たせることで,上側要素の持ち上 がりと打継目上側の破壊を抑制することを考えたが, 1200gal では完全に抑制できなかった.

4. 結論

本研究では、改良版個別要素法用いて無筋コンク リート橋脚の振動台実験の再現解析を行い、手法の適 用性を検証した.従来の手法には、摩擦特性と破壊領 域の再現性に問題があることを明らかにし、解決法の 一案を提案した.提案手法により、破壊が発生しない ケースでは、打継目の水平ずれを良好な精度で再現す ることに成功した.しかし、破壊が発生するケースで は、打継目上部も一部が破壊し、課題を残した.

参考文献 1) A. Furukawa et. al., Journal of Disaster Research Vol.6, No.1, 2011. 2) 鉄道総合技術研究所: 受託業務報告書 無筋橋脚耐震対策確認試験, 2015. 3) 鉄道総合技術研究所:鉄道構造物等設計標準・同 解説 耐震設計,丸善, 2012.

謝辞 西日本旅客鉄道(株)による振動台実験結果を使 用させて頂きました.

(左:実験,右:解析,右側がx軸正)