# 第V部門 各種薄層補修材を適用した RC はり部材の静的および疲労耐荷性状

| 大阪工業大学工学部 | 学生会員 | ○原田 大樹 |  |
|-----------|------|--------|--|
| 阪神高速道路(株) | 正会員  | 岡本信也   |  |

# 大阪工業大学工学部 正会員 井上 晋

### <u>1 序論</u>

我が国の道路橋は、高度成長期に集中的に建設され たため、現在では劣化が急激に増加している.中でも、 輪荷重の影響を受けるコンクリート床版は様々な劣化 現象が発生し、補修を行っても劣化要因の侵入などに より界面の付着切れ等の再劣化が起きる.これより、 劣化部分を「薄く」補修し、再劣化要因を生み出しに くい材料・技術の研究を実施することにした.

本研究では3種類の補修用材料をRCはり部材の薄 層補修材として適用した場合について,静的耐荷特性 ならびに疲労特性を検討することを目的としている.

#### 2 実験概要

本実験では、断面形状として幅×高さ=300×190mm の長方形断面(全長 2000mm)のRCはり供試体を静的 載荷試験と疲労載荷試験の実験要因に分け合計24体の RCはり供試体を作製した.せん断スパン長(支点と載 荷点との距離)とし、a=750mm(a/d=5.0)とした. 劣化を模擬した補修部は、スパン中央部に作製し、範囲 は 300mm×500mmとした.

•静的載荷試驗

スパン長 1800mの単純支持を行い,スパン中央に 300×300mmの載荷板とゴム版を介して等分布荷重を 載荷した.

·疲労載荷試験

50 kN 油圧サーボジャッキを用いた載荷を行なった. スパン・載荷板の大きさなどは静的載荷試験と同様で ある. 下限荷重を 5 kN とし上限荷重を 50kN:100000 回(3.5Hz)60kN:100000 回(3.5Hz)70kN:100000 回(3.5Hz) 90kN:10000 回(3.5Hz)の斬増型ステップを採用した.





#### 3 実験結果と考察

### 3.1 各材料の諸強度

補修材は、以下の3種類とした.

- 【B】無収縮超速硬セメントモルタル
- 【C】超速硬ポリマーセメントモルタル
- 【D】繊維補強超速硬セメントモルタル

補修材の諸強度を表 3-1-1 に示す.

また,はり供試体に用いたコンクリートの諸強度は, 圧縮強度が 33.9N/mm<sup>2</sup>,ヤング係数が 29.7kN/mm<sup>2</sup>となっている.

表 3-1-1 補修材の諸強度

| 補修材 | 圧縮強度       | 引張強度       | 曲げ強度       | ヤング係数                    |  |
|-----|------------|------------|------------|--------------------------|--|
|     | $(N/mm^2)$ | $(N/mm^2)$ | $(N/mm^2)$ | $(\times 10^3) (N/mm^2)$ |  |
| В   | 82.7       | 3.63       | 7.09       | 23.4                     |  |
| С   | 42.6       | 5.58       | 18.8       | 26.3                     |  |
| D   | 53.9       | 3.45       | 5.62       | 24.3                     |  |

#### 3.2 破壞形式

本実験結果を表 3-2-1, 表 3-2-2 に示す.

静的載荷試験と疲労載荷試験ともに、はつりありの 補修材なしの供試体以外は計算値を実測値が上回る結 果となった.静的載荷試験の各補修材 10mm 接着剤な しと D20mm 接着剤なしは曲げ破壊となった.これは はつり深さによって変化した有効高さによる影響が考 えられる。 供試体の中央におけるひずみと位置の関係のグラフ 図 3-2-1~図 3-2-6 より,50 kN と 70 kN のときを比較 したとき、グラフの傾きは緩く変化するが形自体はほ とんど変化していないことがわかる.このことから、 全体的に平面保持しているため、界面で補修材はずれ ていないと考えてよい.

表 3-2-2 静的載荷試験 破壊形式

| #### ##\$PD  |        | 曲げ破壊荷重計算値 |            | せん断破壊荷重計算値 |            | 最大荷重実測値 | 破壊影子  |
|--------------|--------|-----------|------------|------------|------------|---------|-------|
| 供訊件          | 们政口    | 設計値(kn)   | 実材料計算値(kn) | 設計値(kn)    | 実材料計算値(kn) | (kn)    | 银坯形式  |
| B10mm接あり     | 10月8日  | 90.0      | 100        | 100        | 101        | 138     | せん断破壊 |
| B10mm接なし     | 10月8日  | 90.0      | 104        | 100        | 110        | 140     | 曲げ破壊  |
| B20mm接あり     | 10月6日  | 90.0      | 100        | 100        | 101        | 129     | せん断破壊 |
| B20mm接なし     | 10月6日  | 90.0      | 101        | 100        | 101        | 145     | せん断破壊 |
| C10mm接あり     | 10月6日  | 90.0      | 100        | 100        | 101        | 126     | せん断破壊 |
| C10mm接なし     | 10月6日  | 90.0      | 104        | 100        | 110        | 128     | 曲げ破壊  |
| C20mm接あり     | 10月6日  | 90.0      | 100        | 100        | 101        | 129     | せん断破壊 |
| C20mm接なし     | 10月6日  | 90.0      | 101        | 100        | 101        | 119     | せん断破壊 |
| D10mm接あり     | 10月8日  | 90.0      | 100        | 100        | 101        | 119     | せん断破壊 |
| D10mm接なし     | 10月10日 | 90.0      | 104        | 100        | 110        | 130     | 曲げ破壊  |
| D20mm接あり     | 10月8日  | 90.0      | 100        | 100        | 101        | 123     | せん断破壊 |
| D20mm接なし     | 10月10日 | 90.0      | 100        | 100        | 101        | 137     | 曲げ破壊  |
| D20mm接なし(試し) | 10月10日 | 90.0      | 100        | 100        | 101        | 127     | せん断破壊 |
| 補修材なし10mm    | 10月10日 | 90.0      | 100        | 100        | 101        | 92.4    | せん断破壊 |
| 補修材なし20mm    | 10月10日 | 90.0      | 100        | 100        | 101        | 82.6    | せん断破壊 |
| はつりなし        | 10月8日  | 90.0      | 100        | 100        | 101        | 126     | せん断破壊 |

表 3-2-2 疲労載荷試験 破壊形式

| #封床 打弧口       |               | 曲げ破壊荷重計算値    |            | せん断破壊荷重計算値 |             | 最大荷重実測値 | 破壊形式  |
|---------------|---------------|--------------|------------|------------|-------------|---------|-------|
| 供訊件           | 们故口           | 設計値(kn)      | 実材料計算値(kn) | 設計値(kn)    | 実材料計算値(kn)  | (kn)    |       |
| B10mm接着剤あり    | 10月8日         | 90.0         | 104        | 100        | 102         | 139     | せん断破壊 |
| B10mm接着剤なし    | 10月8日         | 90.0         | 104        | 100        | 101         | 151     | せん断破壊 |
| C10mm接着剤あり    | 10月6日         | 90.0         | 105        | 100        | 105         | 139     | せん断破壊 |
| C10mm接着剤なし    | 10月6日         | 90.0         | 104        | 100        | 102         | 135     | せん断破壊 |
| D10mm接着剤あり    | 10月10日        | 90.0         | 104        | 100        | 101         | 133     | せん断破壊 |
| はつりなし         | 10月8日         | 90.0         | 104        | 100        | 102         | 134     | せん断破壊 |
| 補修材なし10mm 10月 | 108100        | 10 8 10 00 0 | 104        | 100        | 100         | 90kn ወ} | 疲労    |
|               | 10/310 - 90.0 | 104          | 100        | 100        | 491回目でせん断破壊 |         |       |







706







図 3-2-3 ひずみと位置の関係③



疲労試験より得られた.変位と振動回数についてのデ ータを、グラフとして図 3-2-7 に示す.

図3-2-7より70kNまでは繰返しによる顕著な増加は 見られなかったが、90kNでは1万回で比較的大きな増 加が確認でき、他の供試体でも同様の変化が見られた.



図 3-2-7 変位と振動回数のグラフ①



図 3-2-8 変位と振動回数のグラフ2)

## <u>4 まとめ</u>

本実験では各補修材の明確な差異は認められなかっ た。ただし、切削深さによる差では20mmの多くはせん 断破壊し、切削部分の隅角部をめがけてひび割れが発 生しているため、できるだけ切削深さは浅い方がよい ことがわかる。また、疲労載荷試験より同一荷重にお ける繰返しによりわずかではあるが損傷が進行してい ることが伺える。今後、輪荷重走行試験等のより実際 の状況に近い条件にて試験を行い、薄層補修材の効果 と選別について検討する必要がある.

図 3-2-4 ひずみと位置の関係④