京都大学	学生員	○眞武俊輔	積水化学工業株式会社	村田	匠
京都大学	正会員	大島義信	京都大学 正会員	河野Д	「陸

1.はじめに

ガラス繊維発泡ウレタン(FFU)をトンネル立坑のコンクリート 壁補強材として用いたシールド直接切削工法を大断面へと 適用する試みとして, FFU を格子状に配列し側壁を補強す る構造が提案されている.これまで, FFU コンクリート複合部 材の曲げ耐力, せん断耐力の基本的な特性は明らかにされ ているものの, 合理的にせん断耐力を向上させる方法が求 められている.本研究では, せん断区間に FFU 部材を二段 に配置する構造を提案し, 実験的にその効果を確認した.

2. 実験概要

図 1, 図 2 に示すように, 30mm×60mm の矩形 FFU 補強 材を引張方向に一段配置した供試体を 2 体, 二段配置した ものを 3 体作成した.供試体寸法はいずれも 1450×250× 200mm とした.二段配置では, 500mm のせん断区間での挙 動を把握するために,上段 FFU は分断している.また,実施 工でも行われている FFU 部材の定着法として,FFU 端部を 鋼製板で挟み,その鋼製板を端部平板と溶接することを行っ た.弾性係数を基準に等価換算した方法で,RC と同様に求 めた供試体耐力一覧を**表 1** に示す.ただし,曲げ耐力につ いては,断面法による繰り返し計算を行っている.

載荷については、図1に示すとおり、載荷点距離を 300mm, 支点間距離を 1300mm として、単調載荷を行っている.

3. 実験結果

3.1 破壊形態

供試体のひび割れ発生状況を図3 に示す.一段配置の 供試体については、支点と載荷点を結ぶ線よりも下側にひび 割れが卓越していた.また、二段配置の供試体については、 支点載荷点の線よりも上側に卓越していた.また、一段配置 の供試体では、最終的に FFU 部材の配筋方向に沿ってひ び割れが進展していることが確認された.

3.2 荷重, 変位関係

図4に荷重と中央変位の関係を示す.ここでは、荷重が大 きく低下した点、もしくは荷重増分がなく変位が 10mm 程度 発生した時点を終局状態と定義し、載荷を終了した.図より、

Shunsuke MATAKE, Yoshinobu OSHIMA, Hirotaka Kawano and Takumi MURATA matake.shunsuke.22n@st.kyoto-u.ac.jp

計算上耐力は同程度であるにもかかわらず,最大荷重を比較すると,一段配置よりも二段配置梁の方が大きくなっている. しかし,二段配置梁の曲線において,計算耐力付近で傾きが変化しており,この時点で斜めひび割れが発生した可能性がある.一段配置との差は,斜めひび割れが発生後のアーチ作用の有無によるものと考えられる.

表1 供試体耐力一覧

コンクリートの圧縮強度(N/mm2)	38.12
FFU の曲げヤング率(N/mm2)	14000
FFU 本数	3本または6本
曲げ耐力に達する時のせん断耐力計算値(kN)	274.3
二羽式によるせん断耐力計算値(kN)	99.0
破壊形態	せん断破壊

3.2 最大主ひずみの分布

図1 に示すとおり、コンクリート左右ウェブせん断区間を 三等分する位置において,主ひずみを計測した.ここでは, 3 つのひずみゲージを用いて主ひずみを求めている.図 5 は、それぞれのケースにおいて、最大荷重時の 100%、 70%, 50%, 30%における最大主ひずみの値を示している. ただし、横軸は梁中心を原点として、主ひずみを計測した 位置を示している.図より、一段配置の供試体については、 最大荷重時 70%において, 中心から 275mm の位置にお ける主ひずみが,他の位置でのひずみよりも大きいことが わかる.一方で,二段配置の供試体については,最大荷 重時において,400mm の位置におけるひずみが大きくな っている.これは、斜めひび割れの発生位置が、一段配置 と二段配置で異なっていることを意味しており、一段配置 では支点載荷点を結ぶ直線よりも下側にひび割れが卓越 し、また二段配置では上側に卓越したものと考えらえる.ま た,二段配置では,主に275mm での最小主応力が増加し ており、この位置で圧縮帯が形成されていることがわかっ た. そのため, 二段配置では, 支点載荷点を結ぶ領域で 圧縮帯が形成され,アーチ効果によって耐力が増加した ものと考えられる.

3.2 計算値との比較

一段配置,二段配置の供試体ともに,最大主ひずみが 急激に増加した点を斜めひび割れ発生時と定義して,計 算値との比較を行った.最大荷重,斜めひび割れ発生荷 重および計算値を表2に示す.いずれの供試体において も,斜めひび割れ発生時の荷重は,計算値に近い値をと なっている.そのため,二段配置が斜めひび割れの発生 荷重そのもの与える影響は少ないといえるが,上段への部 材配置によってアーチ作用を誘発するメカニズムが発生し ており,その結果最大耐力の差を生じさせたものと考えら れる.

4. 結論

FFU を二段配置した梁の斜めひび割れ発生荷重は, 一段配置した梁と大きな差はなく,ほぼ計算値と一致する ことが明らかとなった.しかし,圧縮側に FFU 部材を配置 することで,斜めひび割れ発生後のアーチ作用を誘発し, 構造体としての耐力は増加することが分かった.

参考文献

大島義信ら:繊維補強発泡ウレタン材により格子補強したコンクリート平板の分布荷重に対する耐荷特性, 土木学会論文集 F1 特 集号 Vol.68 2012.11

FFU一段

表2 各実験結果と計算値

試験体番号		一段配置		二段配置		
		1体目	2体目	1体目	2体目	3体目
実験値	終局耐力荷重(kN)	108	102	158	167	164
	斜めひび割れ発生荷重(kN)	102	93	118	115	128
計算値	斜めひび割れ発生荷重(kN)	99		99		