ASR と鋼材腐食による複合劣化が RC はり部材の耐荷特性や付着特性に及ぼす影響に関する研究

大阪工業大学大学院	学生員	○福谷	祥
大阪工業大学工学部	正会員	三方	康弘
大阪工業大学工学部	正会員	井上	晋

<u>1. はじめに</u>

コンクリート構造物に対する高耐久化や長寿命化が望 まれているが,塩害,ASR などの単独による劣化現象 の研究事例は多いものの,複合劣化の研究は未だ少ない のが現状である.

本研究では、ASR、塩害、ASR と塩害の複合劣化が 生じた RC はり供試体を作製し、載荷試験を行った. さ らに、土木学会に準じた付着供試体(小)と RC はり供 試体と同じ断面形状を有し、コンクリート内部にせん断 補強筋を配置した付着供試体(大)の2種類を作製し、 引抜き試験を行った.以上の結果から、コンクリート応 力-ひずみ関係、鉄筋の応力-ひずみ関係をモデル化し、 3 次元非線形解析を行い、その解析結果と RC はり供試 体の実験結果の比較検討を行った.

<u>2. 付着供試体</u>

付着試験結果を表-1 に示す.付着供試体(小)では, 劣化を生じた供試体は健全な供試体と比較して,最大付 着応力度が低下した.一方,付着供試体(大)では, ASR 膨張圧をせん断補強筋が拘束することで発生する ケミカルプレストレスにより,最大付着応力度が健全な 供試体と比較して増加する傾向を示した.付着供試体 (大)の試験結果は,後の解析で実測モデルとして用い ることとする.

<u>3. RC はり供試体</u>

図-1 に示すような単鉄筋長方形断面を有する全長 1800mmの RC はり部材を対象として,スターラップ配 置間隔 140mm とした.作製した供試体の一覧を表-2 に 示す.なお,供試体の主鉄筋には D16 (SD295A)を用い, せん断補強筋には D6(SD345)を用いた.載荷試験結果と 腐食鉄筋の機械的性質を表-3 に示す.劣化を生じた供 試体の最大荷重は健全な供試体と比較して低下する傾向 を示した.

Sho FUKUTANI, Yasuhiro MIKATA, Susumu INOUE concrete_laboratory_oit@yahoo.co.jp

表-1 付着試験結果

	付着供試体	体(小)平均值	付着供試体(大)平均値	
供試体(種類)	最大荷重	最大 付着応力度	最大荷重	最大 付着応力度
	(kN)	(N/mm ²)	(kN)	(N/mm ²)
N-0-13(健全)	38.58	11.99	44.32	5.91
C-2-11(塩害)	27.70	8.61	43.13	5.75
A-2-11(ASR)	17.07	5.31	49.63	6.62
A-2-10(ASR)	25.69	7.98	53.76	7.17
AC-2-11(ASR+塩害)	23.03	7.16	52.12	6.95
AC-3-10(ASR+塩害)	29.01	9.02	64.52	8.60

図-1 RC はり供試体 詳細図

表−2 供試体一覧

名称	供試体の種類	養生年数	作製年度	載荷試験年度
N-0-13	健全	0	2013	2013
A-2-10	ACD	2	2010	2012
A-2-11	ASK	2	2011	2013
C-2-11	塩害	2	2011	2013
AC-2-11	ASD,指字	2	2011	2013
AC-3-10	-10 ASK+塭吉	3	2010	2013

表-3 載荷試験結果と腐食状況

	はり供詞	代体	腐食鉄筋			
供試体	最大荷重 (kN)	破壊	質量 減少率	みかけの 降伏強度	みかけの 引張強度	ヤング係数
(KIV)	11/20	(%)	(N/mm ²)	(N/mm^2)	(kN/mm ²)	
N-0-13	70.07	曲げ引張破壊	-	343.8	527.8	192.8
A-2-10	64.92		3.25	331.9	420.7	179.9
A-2-11	67.62		0.88	341.7	486.7	185.3
C-2-11	67.13		1.93	334.3	473.7	181.3
AC-2-11	65.66		2.56	330.0	474.3	178.9
AC-3-10	66.88		3.31	333.1	489.1	180.6

4. 解析概要

3 章で示した RC はり供試体をモデルとし,汎用有限 要素解析プログラム DIANA Version 9.4.3 において 3 次 元非線形解析を行った.構成則として,コンクリートの 圧縮特性は Nakamura らが提案するモデル¹⁾,引張特 性はコンクリート標準示方書モデル,鉄筋の特性はバイ リニアモデル,付着特性は付着供試体(大)の試験結果 より作成した実測モデル,島モデル²⁾,塩害モデル³⁾ の 3 種類を選定した.また,ASR が生じた供試体のケ ミカルプレストレス量は上田らが提案している式⁴⁾に て算出し,供試体中央の主鉄筋位置のコンクリートに目 標とするケミカルプレストレスを導入する ASR 膨張解 析を行なった.

5. 解析結果

本概要ではすべての供試体を扱うことができないため, 扱う供試体は健全供試体と複合劣化供試体のみとする. RC はり供試体の実験値および各モデルの解析値の荷重-中央変位関係を図-2~3に示す.なお、各モデルの後に CP と添付しているものは ASR 膨張解析によりケミカル プレストレスを導入した場合の解析値を示す. N-0-13 供試体の解析値は実測モデル,島モデルともに実験値と 比較し、降伏荷重および最大荷重が若干低下しているも のの、降伏に至るまでのたわみ剛性は精度よく再現でき ている. AC-3-10 供試体の解析結果については、ASR 膨張解析を用いなかった場合にはたわみ剛性が低下し, 実験結果を再現できていない.しかし、ASR 膨張解析 を用いてケミカルプレストレスを導入することでたわみ 剛性が向上し,実験結果を精度よく再現することができ た. また,実測モデル,島モデルを用いた場合は塩害モ デルを用いた場合と比較して,降伏荷重付近の挙動をよ り精度良く再現できている.

<u>6. まとめ</u>

AC-3-10 供試体については、ASR 膨張解析を行うこ とでケミカルプレストレスを導入し、降伏に至るまでの たわみ剛性を向上させ、実験結果の挙動を再現すること ができた.このことから、ASR を生じた RC はり供試 体に対する ASR 膨張解析の整合性を確認することがで きた.また、付着モデルによる解析結果の違いについて は、実測モデル、島モデルを用いた場合は塩害モデルを 用いた場合と比較して、降伏荷重付近の挙動をより精度 良く再現することができた.

図-2 荷重-中央変位関係 (N-0-13)

図-3 荷重-中央変位関係 (AC-3-10)

7. 参考文献

 斎藤成彦,中村光,檜貝勇:剛体バネモデルを用いた RC パネルのせん断二次破壊に関する解析的研究, 土木学会論文集,V-55,No.704,pp.219~234,2002.5
島弘,山本恭史:腐食した鉄筋の局所付着応力-局所すべり関係,日本コンクリート工学年次論文集,vol.13-1,pp.663~668,1991
コンクリート構造物のリハビリテーション研究委員会報告書,日本コンクリート工学会,1998
上田尚史,中村光,国枝稔:ASRを生じた PC はりの膨張挙動と損傷後の構造性能の評価, コンクリート工学年次論文集,Vol.31,No.1,2009