			京都大学工学部	学生会員	〇石川	椋
			京都大学大学院	正会員	木元	小百合
(現	鉄道・	運輸機構)	京都大学大学院	学生会員	森本	恭弘

1. 研究の背景および目的

近年、台風や集中豪雨により多くの不飽和地盤で 土砂災害が発生しており、不飽和土の力学特性の解 明,不飽和モデルの構築が求められている.

本研究では、河川堤防で採取した砂質土を用いて 非排気・非排水条件で不飽和土の三軸圧縮試験を行 った. また, 限界状態の応力比について骨格応力を 用いて整理した. さらに, 不飽和土の等方圧縮試験 を行い、せん断試験の限界状態とともに骨格応力を 用いて e-log σ'_m 平面で整理した.

2. 試験試料

本研究で使用した 試料は, 京都府城陽 市にある木津川右岸 堤防で採取した土を 2mm 以下にふるい分 けしたものである. 図-1. 表-1 に粒径加積曲線, 物理特性を示す.

3. 不飽和土のせん断試験

供試体の作製には,最適含

水比 10.5%となるように蒸

留水を混合させた試料を静

的締固め装置を用いること

3.1 供試体作製方法

粒径加積曲線

表-1 物理特性

土粒子密度 (g/cm3)	2.637
最大間隙比 emax	1.221
最小間隙比 e _{min}	0.716
平均粒径 D ₅₀ (mm)	0.354
細粒分含有率 F_c (%)	26.0
砂 (%)	74.0
シルト (%)	16.8
粘土 (%)	9.2
最適含水比 w _{opt} (%)	10.5
最大乾燥密度 p _{dmax} (g/cm ³)	1.898

で成型した.供試体は,高さ10cm,直径5cmの 円柱形であり、締固め度は85%とした.

3.2 体積ひずみ測定方法

本研究では、軸変位計と側方に設置した非接触変 位計(ギャップセンサー)を用いた方法、軸ひずみ 2%ごとに撮影した供試体の写真から画像処理を行 う方法により,直接供試体を計測することで体積ひ ずみを測定している.軸ひずみ-体積ひずみ関係では 画像解析による結果を示す.

3.3 試験条件, 応力変数

非排気-非排水三軸圧縮試験の試験条件を表-2 に 示す. 今回, 初期サクションを変化させて試験を行 った. 結果の整理には応力変数として骨格応力 σ'_{m} を用いている.

$$\sigma'_m = \sigma_m - P^F \tag{1}$$

$$P^F = (1 - S_r)u_a + S_r u_w \tag{2}$$

ここで、 σ_m :平均全応力、 P^F :平均間隙圧、 S_r :飽 和度, u_a:間隙空気圧, u_w:間隙水圧である.

表-2 試験条件およびせん断前諸量(※は狩野(201

ケース名	セル圧 (kPa)	間隙 空気圧 (kPa)	間隙 水圧 (kPa)	サクション (kPa)	間隙比 <i>e</i>	含水比 W (%)	飽和度 S_r (%)	ひずみ 速度 (%/min)
Us0 💥	300	200	200	0	0.583	17.16	77.63	0.1
Us10 💥	300	200	190	10	0.607	10.69	46.43	0.1
Us50	300	200	150	50	0.597	10.21	45.08	0.1
Us80 🔆	300	200	120	80	0.613	9.98	42.97	0.1
Us200 🔆	300	200	0	200	0.592	8.96	39.91	0.1

3.4 試験結果(初期サクションの影響)

図-2(a)~(c)に異なる初期サクションでの結果を示 す. 応力-ひずみ関係より, 初期サクションが大きい ほど軸差応力が大きくなる傾向にある.軸ひずみ-体積ひずみ関係より、Us10、Us50、Us200 では軸ひ ずみ6%で体積圧縮ひずみが最大となり,限界状態の 体積圧縮ひずみは Us80 で最大, Us50 で最小となっ た. 軸ひずみ-サクション関係では、サクションは軸 ひずみ増加とともに Us200 では減少, Us50, Us80 では減少してから増加し一定に、Us0、Us10 はあま り変化しなかった.これは、初期サクションの違い による間隙空気、間隙水の量に起因していると考え られる.

3.5 試験結果(限界状態での応力比)

図-3 に骨格応力径路を飽和土(CD, CU)および排気-排水試験結果 ²⁾と併せて示す.これより,飽和時,不飽和時,排気-排水条件,非排 気-非排水条件などに関わらず限界状態での応力比は1.43となった.

4. 等方圧縮試験

4.1 試験方法,試験条件

初期セル圧を 120kPa, 間隙空気圧, 間隙水圧を一定とし, セル圧と 間隙空気圧の差が 20→40→80→160→320→640kPa となるようにセル圧 のみを上昇させた.

排気-排水条件での等方圧縮試験の試験条件を表-3 に示す.

表-3 試験条件および等方圧縮前の諸量

	ケース名	セル圧 (kPa)	拘束圧 (kPa)	間隙 空気圧 (kPa)	間隙 水圧 (kPa)	サクション (kPa)	間隙比 <i>e</i>	含水比 W(%)	飽和度 S_r (%)
	s10compress	120→740	20→640	100	90	10	0.628	10.90	45.77
ľ	s50compress	120→740	20→640	100	50	50	0.622	10.39	44.06

4.2 試験結果

図-4 に試験で得られた不飽和時の正規圧密線を、サクション 10kPa、 50kP でのせん断試験から得られた限界状態での e-log σ'_m 関係, 狩野(2013) ²⁾ による飽和時の限界状態線とともに示す.

および限界状態での e-logp'関係

Us0

これより、不飽和時の圧縮指数は、サクション 10kPa では λ =0.080、サクション 50kPa では λ =0.092 と求められ、サクションが大きいほど圧縮指数 λ は大きくなった.また、圧縮指数 λ と同様に、サクションが大きいほど限界状態線の傾きは大きくなり、また飽和時よりも不飽和時で限界状態線の傾きは大きくなった.

5. 結論

不飽和砂質土を用いてせん断試験,排気-排水等方圧縮試験を行い,骨格応力を用いて,限界状態に着目し結果を整理した.

せん断試験では、初期サクション、セル圧の増加による強度の増加を確認した.また、骨格応力で整理した 限界状態での応力比は、実験条件に関わらず 1.43 とほぼ同一の値なった.

等方圧縮試験では、骨格応力で整理した e-log σ'_m 平面の圧縮指数 λ はサクションが大きいほど大きくなった. 圧縮指数 λ と同様に、限界状態線の傾きはサクションが大きいほど大きくなった.

参考文献

 Jommi, C., Remarks on the constitutive modelling of unsaturated soils, Experimental Evidenceand Theoretical Approaches in Unsaturated Soils, Tarantio, A. and Mancuso, C. eds., Balkema, pp.139-153, 2000.

2) 狩野修志, 飽和および不飽和砂質土の非排気-非排水条件下における三軸圧縮試験, 土木学会全国大会, pp.193-194, 2013.