第 II 部門

1 はじめに 蒸発散は、水循環において重要な要素 だが、長期間の流出浸透計算の中で蒸発散を物理的か つ流域を統合的に考慮した計算が行われた例は、今ま で少なかった。本研究では、飽和・不飽和流の物理的挙 動を説明できるリチャーズ式を蒸発散を考慮した形で 定式化し、蒸発散を考慮した鉛直1次元の飽和・不飽 和流モデルを構築した。それを、滋賀県甲賀市信楽流 域試験地へと適用し、実在の地形における飽和・不飽 和流れに対する蒸発散の効果について考察を行った。

2 モデルの構築

2.1 蒸発散を考慮したリチャーズ式の離散化 リチャーズ式の離散化を行う。微小空間に関して連続式を 用いると

 $\frac{\partial \theta}{\partial t} dx dy dz = q dx dy - (q + \frac{\partial q}{\partial z} dz) dx dy - E dx dy \quad (1)$ となる。ここで、 θ :体積含水率、q:上向きを正とした 単位面積当たりの流量、E:上向きを正とした単位面積 あたりの蒸発散量である。(1)式に対して、有限体積 法、後退オイラー法、修正 Picard 法を用いて離散化を 行うと、

$$C_{i}^{n+1,m} \frac{\delta_{i}^{m}}{\Delta t} + \frac{\theta_{i}^{n+1,m} - \theta_{i}^{n}}{\Delta t}$$

$$= \frac{1}{\Delta z^{2}} K_{i+1/2}^{n+1,m} (\delta_{i+1}^{m} + \psi_{i+1}^{n+1,m} - \delta_{i}^{m} - \psi_{i}^{n+1,m})$$

$$- \frac{1}{\Delta z^{2}} K_{i-1/2}^{n+1,m} (\delta_{i}^{m} + \psi_{i}^{n+1,m} - \delta_{i-1}^{m} - \psi_{i-1}^{n+1,m})$$

$$+ \frac{1}{\Delta z} (K_{i+1/2}^{n+1,m} - K_{i-1/2}^{n+1,m}) - \frac{1}{\Delta z} E_{i}^{n+1,m}$$
(2)

となる。なお、ここでC:比水分容量、 ψ :圧力水頭、K: 透水係数、 δ :繰り返し計算実施前後の圧力水頭の差、 Δz :格子幅である。なお、実施前後の、地点i、時刻n+1での反復m回目での圧力水頭を $\psi_i^{n+1,m}$ のように書い ている。また、式中の θ 、K、Cに関しては、 $谷^{1}$ の考 案した式を用いて推定した。

2.2 蒸発散の推定式 蒸発および蒸散の推定に関しては、陸面過程モデル SiB²⁾で用いられている式を用いた。蒸発を *E*_{soil} として、

$$E_{\rm soil} = \frac{1}{\lambda} \frac{1}{r_{\rm soil}} \frac{\rho C_{\rm p}}{\gamma} (f_{\rm n} e_*(T_{\rm g}) - e_{\rm a}) \tag{3}$$

Shintaro IMAI, Kazuaki YOROZU, Yasuto TACHIKAWA imai.shintaro.62n@st.kyoto-u.ac.jp

京都大学工学部	学生員	○今井	伸太郎
京都大学大学院工学研究科	正員	萬 禾	口明
京都大学大学院工学研究科	正員	立川	康人

とした。また、蒸散を Edc として

$$E_{\rm dc} = \frac{1}{\lambda} \frac{1}{r_{\rm c} + 2r_{\rm b}} \frac{\rho C_{\rm p}}{\gamma} (e_*(T_{\rm c}) - e_{\rm a}) \tag{4}$$

とした。なお、実際の計算においては、蒸発は最上層の みから発生するとし、蒸散は、各層から推定値 $E_{dc,1}$ 、 $E_{dc,2}$ … $E_{dc,N}$ が得られるのでその合計を層の数Nで 除した値を与えた。すなわち、(2) 式において

$$E_i^{n+1,m} = E_{\text{soil}}^{n+1,m} + \frac{1}{N} E_{\text{dc},i}^{n+1,m}$$
(5)

とした。

3 蒸発散を考慮した飽和・不飽和流モデルの適用

3.1 対象地域および観測データ モデルの対象地域 は、滋賀県甲賀市信楽町とし、現地の観測塔で観測さ れた気象データを計算に用いた。対象期間は、2012年 4月~2013年10月とした。計算の際には、降雨量、気 温、地表面温度、湿度、日射量を用いた。なお、体積 含水率も観測されており観測深さは-10 cm、-30 cm、-50 cm、-80 cm である。なお、地表面温度に関しては、 気温との差が大きく、観測が正しく行えていないと考 えられたため補正を行った。

3.2 モデルの計算条件および計算時のパラメータ 本研究では、最下端格子の底面を基準点とし、10 個 の格子を設定をした。上端の格子の上面は地表面であ る。格子幅は20cmとし、計算の結果得られた圧力水 頭から算出した体積含水率を、実際に観測された体積 含水率と比較する。また、土壌の組成については、砂 層、ローム層、粘土層の3つのパターンを考慮し、そ れぞれ計算を行った。また、最下層の境界条件は、透 水条件で計算を行った。

3.3 実行結果本研究の計算結果のうち蒸発散を考慮した場合と考慮しない場合、すなわち (2) 式において、 $E_i^{n+1,m} = 0$ とした場合のローム層の最上層の計算結果の10日平均の比較を図1に示し、その2012年8月から11月の1日平均を図2に示す。また、観測された降雨量を図3に示す。蒸発散を考慮した場合には含水率は全体として小さくなり、降雨時にも体積含水

図1 蒸発散を考慮した場合(赤線)と蒸発散を考 慮しない場合(青線)のローム層最上層での 含水率の計算結果(10日平均)。

図3 観測された降雨量の10日平均。

率の上昇が抑えられていることがわかる。

また、-50cm 地点での観測値との比較を図4に示す。 ローム層の実行結果が最も観測値と近くなったが、乖 離が大きい時期も見られる結果となった。これは、ロー ム層の場合のパラメータが、信楽流域試験地の土壌特 性を正確に表現しているわけではないためと考えら れる。今後、土壌サンプリングを実施して適切なパラ メータを得る必要がある。なお、水収支に関しても計 算を行ったが、これに関しては全期間で合計値が0と なることが確認できた。

4 まとめ 本研究では、蒸発散を考慮した飽和・不 飽和流モデルを作成し、信楽流域試験地に適用し、土 壌中の飽和・不飽和流の流れをシミュレーションした。

蒸発散に関しては、ローム層を想定した場合、蒸発 散を考慮した場合には含水率が小さくなった。また、 降雨の際の体積含水率の上昇が抑えられた。観測値と

図2 蒸発散を考慮した場合(赤線)と蒸発散を考 慮しない場合(青線)のローム層最上層での 含水率の計算結果(1日平均)。

図4 計算結果と観測値の比較。緑線が粘土層、赤 線がローム層、黄色線が砂層、青線が観測値 である。

の比較に関しては、ローム層がもっとも近い値となっ たが、乖離が大きい時期も見られパラメータ等の調整 が必要である。

今後の課題としては、飽和・不飽和流モデルへの統 合を行い、地中の斜め流水や、斜面状の地形へのモデ ルの適応が挙げられる。また、信楽流域試験地では、 集水域からの流量なども観測がされており、実際の蒸 発散について計算行い、本研究の結果と比較すること や、実際に土壌のサンプリングを行い、飽和含水率等 のパラメータを同定することが必要である。

参考文献

- 谷 誠:一次元鉛直不飽和浸透によって生じる水面上昇の 特性,日林誌,64(11),pp.409-418,1982.
- Sellers, P.J., Mintz Y., Sud Y.C. and Dalcher A.:Asimple biosphere model(SiB)for use within general circulation models, *Journal of the Atomosphere Science*, Vol.43, No.6, pp.505-531, 1986.