第 I 部門

| 優佑 | 〇谷口 | 学生会員 | 京都大学工学部      |
|----|-----|------|--------------|
| 一貴 | 太古  | 学生会員 | 京都大学工学部      |
| 博通 | 白土  | 正会員  | 京都大学大学院工学研究科 |

## 1. 序論

乱流中の構造物に作用する自励空気力には,次の3 つの成分が考えられる.1つ目は構造物が形成する剥 離流れや表面の境界層で生み出される乱流による空 気力(Signiture turbulence,以降 S.t.と表記),2つ目 は接近流の乱れに起因して作用する空気力(以降 turb. 成分と表記),3つ目は構造物自身の振動に起因する 空気力(以降 mov 成分と表記)である.従来のフラ ッター解析では3つの総和に対し評価を行うが,実 際に構造物の自励振動に寄与するのは mov 成分のみ ではないかと考えられる.本研究では,従来の乱流 中の自励空気力のうち mov 成分のみを抽出し,3つ の空気力の総和と抽出された mov 成分とを比較する.

### 2. 風洞実験概要

断面辺長比の異なる B/D=3.1, 5.0, 8.0 の 3 種類の矩 形断面模型を対象に,模型静止状態及び,たわみ又 はねじれ 1 自由度強制加振状態において,格子乱流 中で模型表面圧力測定実験を行った.強制加振の加 振振幅については,Table.1 に示す①,②の 2 種類を 設定し,いずれも加振振動数は 2.0[Hz]とした.実験 で用いた格子乱流は,接近流変動風速鉛直 w 成分の 乱れ強度は約8.5[%],乱れスケールは42[mm]である.

| Table.1 材 | 「型強制加振の加振振幅 |
|-----------|-------------|
|           |             |

|             | 加振振幅①    | 加振振幅②    |
|-------------|----------|----------|
| たわみ1自由度加振振幅 | 20[mm]   | 6[mm]    |
| ねじれ1自由度加振振幅 | 2.0[deg] | 0.6[deg] |

## 3. 模型表面変動圧力からの考察

B/D=5.0の模型について,模型静止時,加振振幅② でたわみ加振時,ねじれ加振時の3ケースにおける, 模型上面 span 中央部における変動圧力のパワースペ クトル分布を Fig.1 に示す.図より,模型加振周波数 (2.0Hz)成分では加振時のみパワーのピークが生じ, それ以外の周波数領域では加振時と静止時でパワー 京都大学大学院工学研究科学生会員 木原 大樹 京都大学大学院工学研究科学生会員 河田 祐太郎

がほぼ一致している.したがって,模型の加振は加 振周波数成分にのみ寄与し,他の周波数成分には影 響を与えないと考えられる.この傾向は加振振幅① でも同様であった.また,*B/D*=3.1,8.0の模型につい ても*B/D*=5.0と同様に,加振の影響は加振周波数成 分にのみ表れる結果となった.そこで,模型加振時 と模型静止時の加振周波数成分における差を mov 成 分と定義し,mov 成分を抽出することを試みる.

以降の考察では, mov 成分のパワーが他の空気力 成分の数倍程度となる,加振振幅②のケースについ て検討する.



#### 4. mov 成分の抽出

mov 成分は,模型加振時の圧力データの加振周波 数成分から模型静止時の圧力データの加振周波数成 分を差し引くことにより抽出した.この時,2つの圧 力データの時間基準を揃える必要があるため,本研 究では接近流の変動風速の加振周波数成分を時間基 準とする方法を用いた.模型表面圧力の計測と同時 に熱線流速計を用いて変動風速を計測し,得られた 変動風速鉛直成分の加振周波数(2.0Hz)成分を用い て2つの圧力データの時間基準を揃え,差をとるこ とでmov 成分を抽出した.なお,圧力及び風速デー

Yusuke Taniguchi, Daiki Khara, Kazutaka Tako, Yutaro Kawata, Hiromichi Shirato taniguchi.yusuke.25a@st.kyoto-u.ac.jp

タは、デジタルバンドパスフィルターを通して 2.0[Hz]成分を抽出した.模型表面圧力との相関や加 振による接近流の乱れを考慮し、熱線流速計は3つ の模型いずれについても、span 中央、前縁から上流 側60[mm],模型下面から50[mm]の位置に設置した.

上記の手法で抽出した変動風速及び圧力の模型加 振周波数(2.0Hz)成分の波形には、2.0Hzの周期に 歪みが生じる節が存在する.そのため、これらのデ ータを扱う際には、圧力及び風速データが節の影響 を受けていない範囲を1つのサンプルとして取り出 し、サンプル毎に一連の解析を行い、最終的な結果 はそれらのアンサンブル平均をとることで算出した.

### 5. 非定常空気力特性の比較

「全ての空気力成分(S.t.+turb.成分+mov 成分)を 含んでいる模型加振時の圧力データの加振周波数 (2.0Hz)成分」と「抽出した mov 成分」について, それぞれの非定常空気力係数を算出することで,両 者の相違を評価する.まず,模型上面における変動 圧力係数 $\tilde{C}_p$ 及び模型上面変動圧力と模型加振変位 との位相差 $\Psi_H(\Psi_T)$ を算出した(Fig.2,3).図より,  $\tilde{C}_p$ 及び $\Psi_H(\Psi_T)$ の分布形状は全空気力成分と mov 成 分で概ね一致する結果となった.ただし, $\tilde{C}_p$ の値は 抽出した mov 成分の方がわずかに大きく, mov 成分 と他の空気力成分が逆相の関係になっている可能性 が示唆される.図には *B/D*=5.0の模型について示し たが, *B/D*=3.1,8.0の模型でも同様の傾向が得られた.

次に、 $\tilde{C}_p$ 及び $\Psi_H(\Psi_T)$ から算出した非定常空気力 係数 $H_i^*$ ,  $A_i^*$  (*i*=1~4)のうち、たわみ、ねじれそれぞ れの 1 自由度振動の減衰項である  $H_1^*$ ,  $A_2^*$ を示す

(Fig.4~6). B/D=3.1, 5.0の模型では全空気力成分も mov 成分も  $A_2^*$ の値が正となり,ねじれフラッターに 対し不安定性を示す.一方で,B/D=8.0の模型ではい ずれも  $A_2^*$ の値が負となり,ねじれフラッターに対し 安定性を示している.いずれの模型についても,全 空気力成分と mov 成分の非定常空気力係数が概ね一 致していることが確認できる.

# 6. 結論

*B/D*=3.1, 5.0, 8.0 の 3 つの矩形断面模型について, 4 節で示す方法で mov 成分を抽出したところ,「従来の 乱流中の自励空気力(S.t.+turb.成分+mov 成分)」と

「構造物自身の振動に起因する空気力である mov 成 分」の非定常空気力係数は概ね一致するという結果 が得られた.したがって,従来通り3つの空気力成 分の総和を用いた評価をすることで、構造物の振動 に起因する空気力である mov 成分の影響を正しく評 価できていると考えられる.

