1. はじめに

1995年1月17日に発生した兵庫県南部地震によ る数多くの土木構造物の崩壊は日本のみならず世界に も大きな衝撃を与えた。当時の写真を入手し,約200 体の写真による観察を行ったところ,11%の写真につ いては震災時の複雑な荷重条件において,曲げ破壊, 曲げせん断破壊或いはせん断破壊だけではなく,ねじ りが作用している可能性が見受けられた。よって,本 研究では,地震と高架橋構造との相関により発生する

「ねじり」が構造物に与える影響に着目し、複合断面 力を受けた RC 部材の耐荷機構やひび割れ性状、内部破 壊性状を実験及び、AE 解析を行い把握する。

2. 曲げ・せん断にねじりが同時に作用する RC の終局耐 カとひび割れ性状

2.1 実験概要

供試体の概要を表-1 に示し,配筋図を図-1 に示す。 岡本・李らの既往の研究成果^{1) 2)}より実験における曲げモ ーメントとねじりモーメントの比率(以下,T/M)は, 以下の根拠よりT/M=0.42とした。これは,曲げ・せ ん断とねじりを同時に受ける場合でT/M≧0.6では,純 ねじり下で発生する「らせん状のひび割れ」と同様な ひび割れが断面の全面に発生するが,この値以下のT/M では「らせん状のひび割れ」は発生しない。よって曲 げ・せん断の影響とねじりの影響の両方が構造物に現 れるT/M=0.42と固定し載荷試験を実施した。尚,供試 体名のMは曲げ,Qはせん断,Tはねじり,PTは純ね じりを指す。

立命館大学 学生員 ○ 小川 悠、加藤 慎介 立命館大学 フェロー会員 岡本 享久

2.2 終局耐力

実験より得られた曲げモーメント-たわみ関係を図-2 に示す。MQ13では終局耐力 M=61.98(kN・m)で典型的 な曲げ引張破壊をおこした。PT13では終局耐力 M=16.63(kN・m)でせん断破壊を起こした。それに比べ, MQT13においては終局耐力 M=40.14(kN・m)となり, ねじりの影響で耐力が約35%低下し,脆性的なせん断 破壊に移行した。これより,ねじりの作用は構造物の 耐荷力に大きく影響することが認められた。

2.3 ひび割れ性状

図-3に全供試体の終局状態のひび割れ図を示す。 「曲 げ・せん断」載荷に供した MQ13 は純曲げスパンに生じ たひび割れが進展し、軸方向鉄筋降伏後に終局に至っ 曲げ・せん断にねじりが同時に作用する RC はり た。 のひび割れ性状は、せん断とねじりのそれぞれの主引 張応力方向が重なる面で,斜めひび割れが極端に発達 し、一方、主引張応力方向が直交し影響が相殺される 面では、斜めひび割れは生じず曲げひび割れのみが発 生した。これは「曲げ・せん断」載荷の MQ13 のひび割 れと「純ねじり」載荷のPT13のひび割れが重なる箇所と 直交する箇所と同義である。この結果から、複合断面 力の破壊は一般的なせん断破壊と違い、側面の両サイ ドのひび割れ性状が全く異なる特徴的な破壊をするこ とが示された。

Yu OGAWA ,Shinsuke KATO ,Takahisa OKAMOTO, Rv0001se@ed.ritsumei.ac.jp

図-3 ひび割れ図(※支点:●, 載荷点:○)

3. 曲げ・せん断にねじりが同時に作用する RC の AE 解析による内部破壊性状の把握

3.1 実験概要

全供試体において,ひび割れ発生時に放出される弾性波 を計測する AE センサーを側面に4箇所,上面に2箇所 設置し,内部の破壊性状及び進展状況を確認する。

図-4 AE センサー設置図

3.2 ひび割れの分類および位置標定

ひび割れの分類は、引張力によってひび割れが発生する Tensile 型,界面のずれよりひび割れが発生する Shear 型およびその両特徴が混合して発生する Mix 型の3種類に分別した³⁾。初期ひび割れが発生する段階(A mode),終局時の最大荷重の1/3 に達した段階(B mode)の2段階に分けて内部破壊の進行状況を観察した。図-5,図-6,図-7 に各供試体の AE センサーによる位置標定を示す。

図-5 MQ13 Y-Z 断面

図-6 PT13 Y-Z 断面

図-7 MQT13 Y-Z 断面

これより、「曲げせん断」破壊では初期の段階で最大引 張縁の下面から中央に内部ひび割れが発現し、使用限 界段階まで増加することが分かった。また、「純ねじり」 破壊ではひび割れ発現の段階から使用限界段階までは、 Tensile型クラックが断面外周状のみに増加し、使用限 界を超えると中央部にもひび割れが進展することが分 かった。「複合断面力」による破壊では、ねじりの影響 より初期ひび割れの段階では、断面外周から Tensile型 クラックが入りながら中央にもひび割れが発生してゆ き、以後断面外周に Tensile型クラックが増加しながら 断面中央に向かって増加して行くことが分かった。

4. まとめ

本研究の範囲内で,得られた結果を以下に示す。 (1) ねじりを含む複合断面力の破壊性状は,せん断と ねじりの二つの主引張応力方向が重なる面で大きな斜 めひび割れが進展し,その他の面ではひび割れが少な い「局所的な破壊」であることが実験的に確認できた。 (2) AE 解析より「曲げ・せん断・ねじり破壊」は,初期 は「純ねじり破壊」,中期以降は「曲げ・せん断破壊」と 「純ねじり破壊」が共存する破壊であることがわかった。

5. 参考文献

 岡本 享久,長滝 重義:曲げ・せん断とねじりを同時に受ける 鉄筋コンクリート部材の耐力と変形,土木学会論文集,第360号, V-3,1985.8

2) 岡本 享久,李 承漢,長滝 重義:鉄筋コンクリート部材のねじり耐荷機構に関する一考察,土木学会論文集,第390号,V-8,1988.2
3) 川崎佑磨 :アコースティック・エミッション法を用いた鉄筋コンクリート腐食ひび割れ機構の解明に関する研究:熊本大学大学院自然科学研究科 学位論文 2012年3月