第 I 部門

京都大学工学部地球工学科 学生会員 〇太古一貴 京都大学大学院工学研究科 学生会員 三次涼太

1. まえがき

乱流中の自励空気力は、①構造物自身が形成する剥 離流れや表面の境界層により生み出される乱流による 空気力(Signature turbulence, -以後 S.t.と表記する), ②接近流の乱れに起因する空気力(以後 turb.成分と表 記する),③構造物自身の振動に起因する空気力(以後 mov 成分と表記する)より構成されると考えられる. 従来のフラッター解析では、これらの空気力成分の総 和が乱流中の自励空気力と呼ばれることが多いが、実 際に構造物の自励振動に寄与するのはこのうちの mov 成分のみであると考えられる.本研究は mov 成分の抽 出法について実験的に検討を加えるものである.

2. 風洞実験概要

本研究で使用した風洞は,室内回流式エッフェル型 風洞(測定部高さ1800mm,幅員1000mm,長さ 6550mm)であり,格子乱流中において,模型span長 *l*=890[mm],断面幅 *B*=300[mm],*B/D*=5の矩形断面模 型を対象とした模型表面圧力測定を行った.模型は静 止状態と強制加振状態とで計測を行った.たわみ1自 由度加振は倍振幅20[mm],ねじれ1自由度加振は倍振 幅2[deg],加振振動数は2.0[Hz]とした.実験で用いた 格子乱流について,接近流鉛直変動風速(w成分)の 乱れ強度は約8.5[%],w成分の主流方向積分スケール は約42[mm]である.

3. 模型加振の表面変動圧力への影響

格子乱流中における模型静止時・たわみ加振時・ね じれ加振時の模型上面変動圧力のパワースペクトル密 度を Fig.1 に示す.図より,模型加振周波数(2.0Hz) 成分以外のパワーは上記3ケースともほぼ一致してい ることが分かる.すなわち,模型の加振の影響はその 加振周波数成分にのみ現れ,他の周波数成分には現れ ないものと考えられる.言い換えれば,加振周波数以 外の周波数成分について,模型静止時と加振時で S.t.+ turb.成分は不変であると言え,加振周波数成分につい てもこの関係が成立すると仮定すると,mov 成分は, 単純に模型静止時と加振時の加振周波数成分の差の部 分といえる.以降は,この差をmov 成分と定義するこ ととする.本研究の加振振幅条件では,mov 成分のパ ワーがその他の空気力成分に比べて 10² 倍程度であり,

京都大学大学院工学研究科 正 会 員 白土博通 京都大学大学院工学研究科 学生会員 木原大樹

従来の表現での自励空気力の支配的要素となっている. さらに, span 中央断面とスパン方向に *dy*=25[mm]及び *dy*=300[mm] 離れた断面の,それぞれ *x/B*=0.235 (*x* : 断面幅員方向の座標,原点は断面幅の中央)における コヒーレンスをそれぞれ Fig.2, Fig.3 に示す.これら からも前述したように mov 成分の影響は加振周波数 成分においてのみ現われることが分かる.

Fig.1 PSD of pressure on upper side surface of B/D=5 rectangular model

4. mov 成分の抽出手法

前述のように mov 成分を抽出するためには模型静 止時と加振時の空気力または表面圧力の差をとる必要 がある.本研究では両者の時間原点を揃えるために接 近流の周期変動を基準にとることとした. すなわち, 模型表面圧力と同時に風速変動を計測し、風速の 2.0Hz成分データを基準にFig.4に示すように模型加振 時及び静止時の圧力データの時間を揃え、両者の差を とることとした. なお, 圧力データ・風速データとも に、デジタルバンドパスフィルターにより 2.0Hz 成分 を抽出した. 基準となる鉛直変動風速は模型の影響を 受けず、かつ模型表面圧力との間に強い相関をもつも のでなければならない.熱線流速計プローブを動かし ながら鉛直変動風速のパワースペクトル及び模型表面 圧力との相互相関を観察した結果, span 中央、L.E.か ら上流 6cm (=D)、模型下面より 5cm 下方の計測位置 に決定した.

格子乱流中では風速及び圧力の模型加振周波数 (2.0Hz) 成分自体の強さは一定ではなく Fig5 に示す ように波形の崩れ(節)が存在する.そこで,これら のデータを取り扱う際には、模型加振時及び静止時の 圧力データと鉛直変動風速データがこの節と節の間に 収まっている範囲を1つのサンプルと考え、サンプル 毎に模型加振時から静止時の圧力を差し引いた後、波 形のアンサンブル平均をとることとした.

5. mov 成分と全空気力成分の比較

Fig.6, Fig.7 は全ての空気力成分を含んでいる模型加振時の圧力データの加振周波数 (2.0Hz) 成分と,その中から前節の方法で抽出した mov 成分を対象に模型上面における変動圧力係数 \tilde{C}_p 及び模型上面変動圧力と模型加振変位との位相差 $\Psi_H(\Psi_T)$ (Ψ_H :たわみ1自由度振動における,上面負圧最大のたわみ速度下向き最大に対する位相遅れ, Ψ_T :ねじれ1自由度振動における,上面負圧最大のねじれ変位頭上げ最大に対する位相遅れ)を比較したものである.図より,どちらも全空気力成分と mov 成分とでその分布形状はほぼ一致していることが分かる.

Fig.7 Phase difference between fluctuating pressure and the model displacement (torsional moving)

6. 結論

「従来の自励空気力成分(S.t. + turb.成分+ mov 成 分)」と「純粋な構造物自身の振動に起因する空気力で ある mov 成分」との一連の比較検討の結果,両者によ る評価は概ね一致するものと結論付ける.今後,空気 力成分の抽出精度並びに得られた結果の妥当性を評価 するために,より様々な条件下(断面辺長比,気流特 性,加振条件等)での検討を行う必要がある.