1.はじめに

二重鋼管合成部材(以下, CFDST)とは, 直径が異なる二 つの鋼管を同心円上に配置し, 両鋼管の間にコンクリートを 充填した構造形式である.このような構造によって, 内鋼管 内部が空洞となるため, 従来のコンクリート充填鋼管構造 (CFT)と比較して軽量となる利点を有する.これまでに, 著者 らは, 円形の内鋼管を有する CFDST については圧縮試験 ¹⁾, 曲げ試験²⁾, 曲げせん断試験³⁴⁾を行ってきた.本研究は, 既報に引き続き, 角型鋼管を内鋼管に用いた CFDST(図-1 参照)の中心圧縮試験を行い, 鋼管の内径・外径比(*B/D*)が 中心圧縮特性に与える影響について調べることを目的とす る.

2.実験方法

2.1 供試体概要

供試体一覧を表-1 に示す.供試体は,鋼管厚 t_o, t=1.0, 1.6, 2.3mm, ならびに B=27, 53, 80mm の組み合 わせの CFDST 供試体 9 体に,鋼管厚が 1.0, 1.6, 2.3 の CFT 供試体 3 体を加えた合計 12 体である.実験変数は, 径厚比(D/t),ならびに内径・外径比(B/D)である.

2.2 測定項目

図-2に載荷風景を示す.3台の変位計を供試体上部の載荷板の下に配置し,載荷軸方向変位(δ)を測定した.さらに, 内外鋼管外側の南北方向に2軸ひずみゲージを貼付し, 両鋼管の応力状態を測定した.載荷に関しては,供試体上 部より中心圧縮力(N)を単調載荷で作用させた.

3.実験結果と考察

3.1 破壊形式

写真-1に破壊形式を示す. sq16-80をはじめとした供試体 においては、従来の CFT の破壊形式と同様なせん断破壊と それによる局部座屈が見られる.しかし, sq10-53 および sq10-80 では、載荷点近傍が潰れてしまう局部座屈 (Elephant foot)を確認することができた.一方で, sq23-80 で は、せん断は確認されず局部座屈のみが見られた.

Shuhei SHIMIZU and Kojiro UENAKA

神戸市立工業高等専門学校 学生員 〇清水 集平 神戸市立工業高等専門学校 正会員 上中 宏二郎

図-2 載荷風景

写真-1 破壞形式

表-1 供試体一覧と実験結果

No.	Tag	$t_o, t_i(\text{mm})$	H(mm)	D(mm)	<i>B</i> (mm)	D/t	B/D	f_c '(MPa)	f_v (MPa)	$N_u(kN)$	$N_{est}(kN)$	N_u/N_{est}
1	cft10	1.0	450.0	160.0	0.0	160.0	0.000	36.5	201.0	964	784	1.230
2	sq10-27	1.0			27.0	160.0	0.169	32.3	199.3	932	697	1.338
3	sq10-53	1.0			53.0	160.0	0.331	32.3	199.3	624	650	0.960
4	sq10-80	1.0			80.0	160.0	0.500	32.3	199.3	330	556	0.594
5	cft16	1.6			0.0	100.0	0.000	36.5	245.0	1216	832	1.462
6	sq16-27	1.6			27.0	100.0	0.169	32.3	278.1	1116	782	1.427
7	sq16-53	1.6			53.0	100.0	0.331	32.3	278.1	1189	761	1.561
8	sq16-80	1.6			80.0	100.0	0.500	32.3	278.1	796	693	1.147
9	cft23	2.3			0.0	69.6	0.000	36.5	253.0	1386	879	1.576
10	sq23-27	2.3			27.0	69.6	0.169	32.3	344.9	1535	902	1.701
11	sq23-53	2.3			53.0	69.6	0.331	32.3	344.9	1504	918	1.640
12	sq23-80	2.3			80.0	69.6	0.500	32.3	344.9	726	887	0.818

3.2 中心圧縮強度

図-3 に内外鋼管幅比(B/D)と定式化した強度比(N_u/N_{est})の 関係を示す.なお,縦軸の N_{est}は鋼管の拘束効果を考慮し ない CFDST の中心圧縮強度であり,式(1)の通りに表される.

 $\cdots \cdots N_{est} = (A_{si} + A_{so}) \cdot f_y + A_c \cdot f_c' \cdots \cdots (1)$

ここで, *A*_{si}, *A*_{so}, *A*_c:内外鋼管およびコンクリートの断面積, *f*_y:鋼材の降伏強度, *f*_c':コンクリートの圧縮強度である. なお, これらの算定強度を表-1 に示す. 図-3 より, 局部座屈が 発生した供試体では, 比較的載荷初期段階で終局状態に 至り, *N*_u/*N*_{est}<1.0 であることがわかる. 図-4 に式(1)による算 定強度(*N*_{est})と実験強度(*N*_u)の関係を示す. 同図より算定値 は実験値とほぼ一致, あるいは実験値を安全側に評価した.

3.3 変形性能

図-5 に定式化した載荷荷重と変位の関係を示す.ここで, x 軸は軸方向変位を供試体高さで除して百分率で表している.同図より, t=2.3mm かつ B/D が 0.33 以下の供試体では, CFT と同じ挙動を示していることがわかる.

4.まとめ

- (1)sq10-53, sq10-80, sq23-80 の破壊形式は局部座屈で あった. その他の破壊形式はコンクリートのせん断破壊と それに伴う局部座屈であった.
- (2)*t*=2.3mm かつ *B/D* が 0.33 以下の供試体は,角型内鋼管 が変形性能に与える影響は少なかった.
- (3)局部座屈が発生した供試体(sq10-53, sq10-80, sq23-80)においては,強度比(N_u/N_{est})が低下した.

参考文献 1)Uenaka, et al.: *Thin-Walled Structures*, Elsevier, 48(1), 19-24, 2010. 2)Uenaka, et al.: *Steel & Composite Structures*, Techno-Press, 8(4), 297-312, 2008. 3)Uenaka, et al.: *Thin-Walled Structures*, Elsevier, 49(2), 256-263, 2011.4)上中: コンクリート工学年次論文集, 日本コンクリート工学 会, 33(2), 1111-1116, 2011.

図-4 算定強度(Nest)と実験強度(Nu)

