摂南大学	学生員	○佛圓	典史
	正会員	伊藤	譲
奈良県	正会員	堀家	直也

1. 目的:細粒土の工学的性質は間隙水の影響を受けている.特に、土粒子の吸着作用を受けている吸着水が 土の強度や遅れ特性等を強く支配していると考えられる.本研究では,吸着水の特性を凍結試験から把握し, 工学的性質との関係を評価する方法の検討を行った.本研究では3種類の凍結試験の比較を行い、凍結試験 と一軸圧縮強さとの関係を検討している.

2. 試験方法:(1)供試体 表-1 に試料土の物性値を示す. 試料 土に液性限界の約 1.5 倍の蒸留水を加えて練り混ぜ、脱気し た後, p = 19.6~1254.4kN/m²まで荷重増分比p/p = 1 で圧密を 行い、供試体を作成した.

(2)力学試験 一軸圧縮試験は JISA 1216 に従って実験した. (3) 凍結水量測定試験 予圧密された供試体を真空パックし て、不凍液で満たされたセルに挿入し、バスで 0℃~20℃ま で降下させ、体積変化を測定し凍結間隙比efla(Tt)とefla(Tt)を算 出した. ここで, α, β, γはそれぞれ以下に示す. 凍結水量測 定試験、土壌水分計による凍結水分量測定試験、凍結体積測 定試験とする.

(4)土壌水分計による凍結水分量測定試験 (3)同様に準備 された供試体を、アルミ容器に入れ、ビニールで密閉して アルミ容器ごと不凍液バスに入れた.温度降下させながら、 温度はPtセンサーにより、未凍結水量は土壌水分計で測定 し, 凍結間隙比e_{f1B(TO)}とe_{f2B(TO)}を算出した.

(5)凍結体積膨張試験 圧密供試体を φ = 100mm×h = 25mmに整形後、セルにセットし、バスで上部(以下、「Tt」) と下部(以下,「T_b」)方向から0℃から-20℃まで温度降下さ せながら、T_t, T_bに挿入されたPtセンサーで温度, 変位計で 体積膨張を測定した.

(6)凍結間隙比 それぞれ凍結間隙比e_{f1a, β, γ(TC)}, e_{f2a, β, γ(TC)} を以下の式から算出した.

$$e_{f^{1\alpha,\beta,\gamma}(\Gamma^{\circ}C)} = \frac{V_{wf(T^{\circ}C)}}{V_{s}}$$
(1)

(2)

$$e_{f2\alpha,\beta,\gamma(\Gamma^{\circ}C)} = \frac{V_{wf(T^{\circ}C)}}{V_s + V_{wu(T^{\circ}C)}}$$

ここで、 $e_{fla,\beta,\gamma(T^{c})}$ 、 $e_{f2a,\beta,\gamma(T^{c})}$:凍結間隙比、 $V_{wf(T^{c})}$:

Noribumi BUTSUEN, Yuzuru ITO, Naoya HORIKE cito@civ.setsunan.ac.jp

表1 試料土の物性値

試料名	記号	土粒子	自然含	液性	塑性 限界 PL %	粒度分布		
		ρs g/cm ³	Wn %	LL %		細砂 %	シルト %	粘土 %
藤森08P	F-08	2.667	3.53	42.6	25.7	15.5	61.5	23.0
藤森10P	F-10	2.708	4.08	45.2	21.8	4.6	65.4	30.0
稲荷山黄土	Y	2.763	5.75	58.2	33.3	5.3	26.5	68.2
稲荷山白土	W	2.697	5.13	62.5	23.3	4.2	32.5	63.3
楽白	R	2.594	26.15	54.3	24.5	6.0	23.6	70.4

図2 凍結間隙比 $e_{f_a(TC)} \ge e_{f_2\gamma(TC)}$ の関係

凍結水量, $V_{wu(TU)}$:未凍結水量, V_s :土粒子体積である. 3. 結果と考察:(1)図-1,2に凍結間隙比 $e_{fla,\beta(TU)}$ と $e_{fl\gamma(TU)}$ の関係を示す.図より $e_{fla,\beta(TU)}$ と $e_{fl\gamma(TU)}$ は1:1の関係になると期待された. $e_{fla(TU)}$ との比較では、2グループに別れている.一方のグループは、 $e_{fla(TU)}$ の方が約15%大きめに、もう他方のグループは $e_{fl\gamma(TU)}$ にほぼ等しい. $e_{fl\beta(TU)}$ の比較では、F-08以外は $e_{fl\beta(TU)}$ と $e_{fl\gamma(TU)}$ は、 $e_{fl\gamma(TU)}$ の方に一定の間隔で離れていて、 $e_{fl\beta(TU)}$ の方が約20%小さくなっている. (2)図-3に間隙比e,凍結間隙比 $e_{fla(-1U)}$ と一軸圧縮強さ q_u の関係を示す. $e_{fla(-1U)}$ との分布は、それぞれの相関係数

は-0.86 と-0.91 にり, e_{fla(-1 C)}の方がばらついている.

(3) 図-4 に間隙比e, 凍結間隙比e_{f2a(-1で)}と一軸圧縮強さq_uの関係を示す. e_{f2a(-1で)}とeの分布は、それぞれの相関係数は-0.79 と-0.91 になった. この結果から、2 つの凍結間隙比では、e_{f2a(-1で)}よりもe_{f1a(-1で)}の方が一軸圧縮強さと関係していることが分かる.

(4)図-5 に凍結間隙比*e*_{fla(TC)}と一軸圧縮強さ*q*_uの関係を示 す.通常の間隙比*e*と凍結間隙比*e*_{fla(TC)}が小さくなるにつ れ,一軸圧縮強さ*q*_uは増加する傾向にある.

(5)図-6 に未凍結間隙比 $\triangle e_f \& -$ 軸圧縮強さ q_u の関係を示 す.未凍結間隙比 $\triangle e_f \& 1^{\circ} C$ から-20 $\circ C$ まで一軸圧縮強さ q_u に関係ないことが示された.つまり、 $q_u \& z$ 支配しているの は、 $-1^{\circ} C$ までに凍結する水分であり、 $-1^{\circ} C$ 以下で凍結する 水分は q_u に影響しないことを意味する.

4. まとめ: (1) $e_{fly(T_{U})}$ を基準に比較すると、 $e_{fla(T_{U})}$ では、 $e_{fly(T_{U})}$ より $e_{fla(T_{U})}$ の方が約 15%まで大きくなる傾向がある が、いくつかの試料では、 $e_{fly(T_{U})}$ と近い値を示した. $e_{flp(T_{U})}$ は $e_{fly(T_{U})}$ よりも約 20%小さい値を示す.

(2)一軸圧縮強さとの関係では、式(1)に示した、e_{fla}がe_{f2a}よりも相関関係がある.

(3)通常の間隙比eと凍結間隙比 $e_{fla(TO)}$ が小さいほど,一軸 圧縮強さ q_u は大きくなる.しかし,未凍結間隙比 $\triangle e_f$ が-1 $^{\circ}$ ~-20 $^{\circ}$ では変化しても,一軸圧縮強さとは関係がなく, 一軸圧縮強さ q_u を支配しているのは-1 $^{\circ}$ までに凍結する 水分 $e_{fla(LO)}$ であると考えられた.

謝辞:本研究に協力していただいた,摂南大学都市環境工学科の川 本豪氏,中村和麻氏に厚く御礼申し上げます.なお本研究には,科 学研究費補助金(基盤研究(c))課題番号 22560501 番の一部が使用さ れています.

参考文献: 堀家・伊藤: 飽和細粒土の透水係数と凍結試験から得ら れる間隙特性の関係について,日本材料学会,第9回地盤改良シン ポジウム論文集, pp.321-326, 2010.

