日本は台風・地震の常襲地であり、高潮や津波、高波浪の影響が大きい、大規模の高潮や津波の来襲時に係留索が破断し、 係留船舶の漂流・座礁、岸壁への乗り上げといった被害が想 定される.こういった被害を抑えるために浮体構造物の合理 的な設計方法の確立が急がれている.本稿では、五十里ら¹が 用いた計算モデルを高精度化し、既往の水理実験⁹との比較を 通じて、本モデルの妥当性を検証する.

2. 数値解析の概要

(1)CMPS-HS法³⁾

CMPS-HS 法は、標準 MPS 法に対して、運動量保存性改善のために圧力勾配モデルを修正し、圧力計算の改良のために 圧力の Poisson 方程式(PPE)の生成項を高精度化したものであ る. 粒子数密度の実質微分を次のように考慮した.

$$\frac{Dn}{Dt} = \sum_{i \neq j} \frac{Dw \left\| \mathbf{r}_{j} - \mathbf{r}_{j} \right\|}{Dt} = \sum_{i \neq j} \frac{Dw_{ij}}{Dt} = \sum_{i \neq j} \left(\frac{\partial w_{ij}}{\partial r_{ij}} \frac{\partial r_{ij}}{\partial x_{ij}} \frac{dx_{ij}}{dt_{ij}} + \frac{\partial w_{ij}}{\partial r_{ij}} \frac{\partial r_{ij}}{\partial y_{ij}} \frac{dy_{ij}}{dt_{ij}} \right)$$

$$= \sum_{i \neq j} \frac{-r_{e}}{r_{ij}^{3}} \left(x_{ij} u_{ij}^{*} + y_{ij} v_{ij}^{*} \right) \tag{1}$$

ここに、 (x_{ij}, y_{ij}) : 粒子jの粒子iに対する相対座標、 (u_{ij}^*, v_{ij}^*) : 粒子jの粒子iに対する相対速度である.また、重み関数は、

$$w(r) = \begin{cases} \frac{r_e}{r} - 1 & (r \le r_e) \\ 0 & (r > r_e) \end{cases}$$
(2)

である.ここに、 r_e は相互作用の計算範囲を与える半径である.式(1)から高精度化した PPE の生成項を導出し直すと、次式のように表される.

$$\left(\nabla^2 p_{k+1}\right)_i = \frac{\rho}{n_0 \Delta t} \left(\frac{Dn}{Dt}\right) = -\frac{\rho}{n_0 \Delta t} \left(\sum_{i \neq j} \frac{r_e}{r_{ij}^3} \left(x_{ij} u_{ij}^* + y_{ij} v_{ij}^*\right)\right) (3)$$

(2)高次Laplacianモデル3)

CMPS-HS 法は、PPE に高精度生成項を適用しているが、 式(3)の左辺すなわち圧力の Laplacian は標準 MPS 法における

Hirotoshi NONODA, Hiroyuki IKARI and Hitoshi GOTOH hirotoshi.n@ky8.ecs.kyoto-u.ac.jp

京都大学工学部	学生員	○野々田	浩敏
京都大学大学院工学研究科	正会員	五十里	洋行
京都大学大学院工学研究科	正会員	後藤	仁志

記述のままである. 圧力計算をより安定化させるためには、 高精度の Laplacian モデルを導出する必要がある. 粒子 *i* にお ける Laplacian は、その粒子において計算される勾配の発散を とることによって定義される. 当該粒子における勾配は、

$$\langle \nabla \phi \rangle = \frac{1}{\sum_{i \neq j} w_{ij}} \sum_{i \neq j} (\phi_j - \phi_i) \nabla w = \frac{1}{\sum_{i \neq j} w_{ij}} \sum_{i \neq j} \phi_{ij} \nabla w ;$$

$$\phi_{ij} = \phi_j - \phi_i$$

$$(4)$$

と表されるので、粒子iにおける Laplacian は次式になる.

$$\nabla \cdot \left\langle \nabla \phi \right\rangle_{i} = \frac{1}{n_{0}} \sum_{i \neq j} \left(\nabla \phi_{ij} \cdot \nabla w_{ij} + \phi_{ij} \nabla^{2} w_{ij} \right);$$

$$n_{0} = \left(n_{i} \right)_{0} = \left(\sum_{i \neq j} w_{ij} \right)$$
(5)

ここで、 ϕ_{ij} と w_{ij} の勾配は、

$$\nabla \phi_{ij} = \frac{\partial \phi_{ij}}{\partial r_{ij}} \frac{\partial r_{ij}}{\partial x_{ij}} \mathbf{i} + \frac{\partial \phi_{ij}}{\partial r_{ij}} \frac{\partial r_{ij}}{\partial y_{ij}} \mathbf{j}$$

$$\nabla w_{ij} = \frac{\partial w_{ij}}{\partial r_{ij}} \frac{\partial r_{ij}}{\partial x_{ij}} \mathbf{i} + \frac{\partial w_{ij}}{\partial r_{ij}} \frac{\partial r_{ij}}{\partial y_{ij}} \mathbf{j}$$
(6)

となる. 一方,

$$\nabla^{2} w_{ij} = \nabla \cdot \nabla w_{ij} = \frac{\partial}{\partial x_{ij}} \left(\frac{\partial w_{ij}}{\partial r_{ij}} \frac{\partial r_{ij}}{\partial x_{ij}} \right) + \frac{\partial}{\partial y_{ij}} \left(\frac{\partial w_{ij}}{\partial r_{ij}} \frac{\partial r_{ij}}{\partial y_{ij}} \right)$$
$$= \frac{\partial^{2} w_{ij}}{\partial r_{ij}^{2}} \left(\frac{\partial r_{ij}}{\partial x_{ij}} \right)^{2} + \frac{\partial w_{ij}}{\partial r_{ij}} \frac{\partial^{2} r_{ij}}{\partial x_{ij}^{2}} + \frac{\partial^{2} w_{ij}}{\partial r_{ij}^{2}} \left(\frac{\partial r_{ij}}{\partial y_{ij}} \right)^{2} + \frac{\partial w_{ij}}{\partial r_{ij}^{2}} \frac{\partial^{2} r_{ij}}{\partial y_{ij}^{2}} \right)$$
$$= \frac{\partial^{2} w_{ij}}{\partial r_{ij}^{2}} \left(\frac{x_{ij}^{2}}{r_{ij}^{2}} + \frac{y_{ij}^{2}}{r_{ij}^{2}} \right) + \left(\frac{2}{r_{ij}} \frac{\partial w_{ij}}{\partial r_{ij}} - \frac{1}{r_{ij}} \frac{\partial w_{ij}}{\partial r_{ij}} \right) = \frac{\partial^{2} w_{ij}}{\partial r_{ij}^{2}} + \frac{1}{r_{ij}} \frac{\partial w_{ij}}{\partial r_{ij}}$$

となる.以上より,式(3)および式(4),(5)から次式が導かれる.

$$\nabla \cdot \left\langle \nabla \phi \right\rangle_{i} = \frac{1}{n_{0}} \sum_{i \neq j} \left(\frac{2\phi_{ji}}{r_{ij}} \frac{\partial w_{ij}}{\partial r_{ij}} + \phi_{ij} \frac{\partial^{2} w_{ij}}{\partial r_{ij}^{2}} + \frac{\phi_{ij}}{r_{ij}} \frac{\partial w_{ij}}{\partial r_{ij}} \right)$$

$$= \frac{1}{n_{0}} \sum_{i \neq j} \left(\phi_{ij} \frac{\partial^{2} w_{ij}}{\partial r_{ij}^{2}} - \frac{\phi_{ij}}{r_{ij}} \frac{\partial w_{ij}}{\partial r_{ij}} \right)$$
(8)

ここで,式(2)を適用すれば,2次元における高次 Laplacian モ デルは以下のようになる.

$$\nabla \cdot \left\langle \nabla \phi \right\rangle_i = \frac{1}{n_0} \sum_{i \neq j} \left(\frac{3\phi_{ij} r_e}{r_{ij}^3} \right) \tag{9}$$

(3)係留索・浮体の運動解析

係留索と浮体の運動解析については,五十里ら¹⁾と同様 の手法で行った.

3. 波浪中の係留浮体運動のシミュレーション

(1) 計算領域

図-1 に計算領域を示す. 用いた境界条件は, 五十里ら³と ほぼ同じであるが, 消波領域を0.5m長くした. 周期1.0s, 波 高0.13mの波が造波される.

図-2 瞬間像

(2)計算結果と考察

図-2 に、一周期分の瞬間像を示す.係留索粒子は、見やす いように計算点の位置に水粒子と同じ大きさの粒子を描画し て表示している. t/T=0.25 では、浮体は波の谷に存在し、係 留索は弛緩状態にある.波峰に差し掛かるとともに、浮体は 水面勾配と同じ勾配で傾きながら、岸側へと移動する (t/T=0.45). 波頂に至ると、浮体はほぼ水没し、係留索は緊張 する(t/T=0.65). そして、再び係留索は弛緩し、浮体は沖側に 移動する(t/T=0.85~0.05).

図-3 に、浮体重心の軌跡の一例を、既往の水理実験²の結 果と併せて示す. 浮体は時計回りに移動し、その軌跡は、幅、 高さ共に約0.1mの斜め右上に引き延ばされた楕円を描く. 四 角形のプロットは、1/10周期ごとに重心位置を示したもので あるが、ほぼ等間隔であることから、一周期内で移動速度は あまり変化しない.

図4 に、浮体に作用した係留索張力の時系列変化を示す. 係留索が弛緩状態にあるとき、計算結果の張力はほぼ一定で あり、水理実験結果ほどの変化が見られない. 係留索が緊張 状態に見られるピーク値は、水理実験結果と概ね良好に対応 しているが、計算ではピーク後、一旦張力が減少し、再び増 加している. これは、浮体と係留索粒子とを接続するバネに おいて係留索張力を推定しているが、このバネでは質量の異 なる二物体をつないでいるため、両端の質点において慣性力 が異なり、振動が乗りやすいからであると考えられる. 弛緩 状態から緊張状態に移行する際には、物体に作用する流体力 が大きくなるので、両端の粒子の移動量の差が顕著になり、 瞬間的にではあるが張力が過剰に作用しているのだと思われ る. しかし、標準 MPS 法の計算結果と比較すると、明らか に高周波のノイズが見られなくなっている. これは圧力擾乱 が抑制されたことで浮体に作用する流体力の微小な変動が低 減されたからである.

4. 終わりに

本研究では、高精度粒子法を用いて、波浪中の係留浮体の 運動の解析を行った.計算結果は、水理実験結果と概ね対応 するものであったが、係留索張力については、弛緩状態にお ける再現性が不充分であるので、改善していきたい. 参考文献

五十里洋行,後藤仁志:粒子法による鎖係留浮体シミュレーションの開発,海岸工学論文集,第55巻,pp.901-905,2008.
 重村利幸,林建二郎,神崎智志:外洋に面した海浜上にある係船浮体の挙動について,海岸工学論文集,第34巻,pp.621-625,1987.

3) A. Khayyer and H. Gotoh: A higher order Laplacian model for enhancement and stabilization of pressure calculation by the MPS method, *Applied Ocean Research*, pp.124-131, 2010.