第I部門

関西大学理工学研究科 学生員 ○木野村宏昭 関西大学環境都市工学部 正会員 堂垣 正博

1. まえがき

兵庫県南部地震において、車両衝突防止用に基部 にコンクリートが充填された鋼製橋脚の損傷が、無充 填のそれに比べ、軽微であった. 充填コンクリートは. 鋼製橋脚の強度や変形の向上に大いに役立ち、小さい 断面でも耐力と変形能に優れている. 構造上, より有 利な橋脚を設計するためにもコンクリートが充填され た鋼製橋脚のさまざまな条件下での挙動を明らかにし、 簡便な設計法を考案することは意義深い.

ここでは, 充填コンクリートの高さ, 鋼製橋脚を 構成する主板パネルの幅厚比パラメータなどが橋脚の 耐震性能に及ぼす影響を汎用有限要素プログラム "MARC2005r3"による弾塑性有限変位解析で明らか にする. 主板パネルや縦補剛材の局部座屈がコンクリ ート充填鋼製橋脚の地震時挙動に及ぼす影響を調べる.

2. コンクリート充填鋼製橋脚の解析モデル

2.1 解析モデル

高架橋を支えるコンクリート充填鋼製橋脚を図-1 のように単柱にモデル化する. その頂部に地震力に相 当する繰返しの水平荷重 Η と上部構造の荷重に相当 する圧縮力 P が同時に作用する場合を解析する. 橋 脚の断面形状は、図-2のとおりである.

2.2 材料特性

解析対象のコンクリート充填鋼製橋脚を構成する 鋼板パネルと縦補剛材に鋼種 SM490Y 材を仮定した 1). 鋼材と充填コンクリートの応力-ひずみ関係をそれぞ れ図-3(a), 図-3(b) に示す. また, 鋼材とコンクリー トのポアソン比はそれぞれ 0.3, 0.167 である.

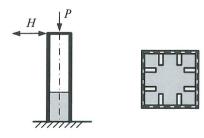
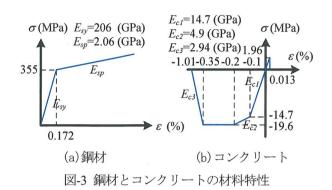



図-1 橋脚解析モデル 図-2 断面形状

3. 数値解析結果とその考察

3.1 充填コンクリートの効果

充填コンクリートの効果に期待し, 無充填状態で, 道路橋示方書V耐震設計編²⁾の耐震規定を満たさない 橋脚断面を対象に解析する. 橋脚モデルは、細長比パ ラメータが $\overline{\lambda}=0.34$, 縦補剛材の自由突出幅厚比パラ メータが R=0.47、縦補剛材の曲げ剛比が $\frac{1}{1}$ /*=3 で、 主板パネルの幅厚比パラメータが R_p=0.55, 0.76 の 2 パターンである. 上部構造の死荷重に相当する圧縮力 は, 頂部で軸力の比が P/P,=0.1 の一様分布圧縮応力 として作用させた.

充填コンクリートが鋼製橋脚の耐震性能に及ぼす 影響を明らかにするため、充填率を 0~60%の範囲で 解析した. Rn=0.55 の無充填鋼柱の場合, 繰返し載荷 によって得られた橋脚の水平強度と水平変位の履歴曲 線を描けば、図-4 を得る、図中、○印は各変動振幅 における最終サイクル目の正の除荷点を表す. ○印の 点を結んで得られる包絡線を充填高さごとに図示すれ ば, 図-5を得る.

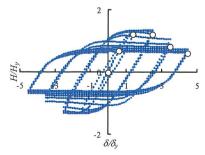


図4 橋脚の水平強度と水平変位の履歴曲線

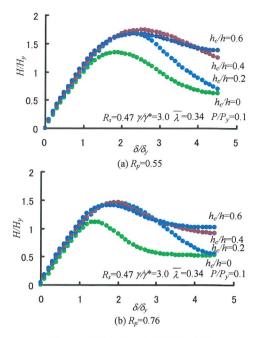


図-5 水平強度-水平変位曲線

図-5 に示す橋脚の耐力を考察する. コンクリート を充填すると、橋脚の水平強度が飛躍的に改善される. ただし、R_n=0.55 の場合、充填率が 40%から 60%の 範囲で耐力の上昇は頭打ちになり、 $R_n = 0.76$ の場合、 20%で頭打ちになる.

つぎに、橋脚の変形能を考察する. $R_p = 0.55$ の場合、 ピーク荷重に達した時点の変形量や、その後の耐力カ ーブから考えて、コンクリートの充填で橋脚の変形性 能がかなり改善した. 一方, $R_p = 0.76$ の場合, ピーク 荷重後の強度低下が著しく、主板パネルが薄い橋脚で はコンクリートを 20%以上充填しても変形能の向上 があまり見込めない.

補剛板に生じる局部的な板曲げの発生位置を検討 する. R_p=0.55 と R_p=0.76 のいずれも充填率が 40%ま での範囲では、充填部に隣接した圧縮フランジ側に局 部的な面外変形が発生し進展していった。一方、60% 充填された橋脚に局部的な変形は現れなかった.

3.2 耐震性能の評価

3.1 の数値解析結果を用いて, 道路橋示方書 V 耐震 設計編の基準に則って耐震性能を評価する. その結果 を表-1 に示す. 表中, ○印は耐震基準を満たし, × 印は満たさないことを意味する.

 $R_p = 0.55$ の場合の橋脚の耐震性能を考察する. 無充 填鋼柱の場合、タイプI地震動に対しては耐震基準を 満たす. 一方、タイプⅡ地震動に対しては満たさなか

った. ただし、コンクリートが 20%以上充填されれ ば、いずれの場合も耐震基準を満たす、強度や変形能 から判断して、コンクリート充填率は 40~60%が妥 当である.

 $R_n = 0.76$ の無充填鋼柱の場合,タイプ I 地震動およ びタイプⅡ地震動とも耐震基準を満さなかった. ただ し、コンクリートを 20%程度充填すれば、タイプ I 地震動の耐震基準は満たされる.一方,ピーク荷重後 の変形能が改善できなかったので、充填コンクリート を挿入してもタイプⅡ地震動に対しては満たさない.

表 - 1 耐震性能の評価								
(a) $R_p = 0.55$								
地震タイプ	タイプ I				タイプⅡ			
充填率	0%	20%	40%	60%	0%	20%	40%	60%
地震時保有水平耐力	0	0	0	0	×	0	0	0
許容残留変位	0	0	0	0	0	0	0	0
許容塑性率	0	0	0	0	×	0	0	0
(b) $R_p = 0.76$								
地震タイプ	タイプ I				タイプ Ⅱ			
充填率	0%	20%	40%	60%	0%	20%	40%	60%
地震時保有水平耐力	×	0	0	0	×	×	×	×
許容残留変位	0	0	0	0	0	0	0	0
許次朔杜索	×	0			Y	Y	Y	Y

4. あとがき

地震時のコンクリート充填鋼製橋脚の耐震性能を 明らかにするため、上部構造の死荷重に相当する圧縮 力と地震力に相当する水平荷重が同時に作用する場合 の弾塑性有限変位解析を行った. 本研究で得られた結 果をまとめれば、つぎのとおりである.

- 1) 補剛断面からなる鋼製橋脚にコンクリートが充 填されれば、耐荷力はかなり上昇し、変形性能 も向上した. また, 局部的な板曲げによる変形 の発生や進展を遅らせることができ、高い補強 効果が得られた.
- 2) コンクリートの充填効果は主板パネルの板厚に よって異なる. 主板パネルが厚いほどその効果 が大きい. また, コンクリートの充填効果には 限界があり、板厚が薄すぎると、充填コンクリ ートをいくら増しても耐震基準を満たさない.

参考文献

- 1)日本道路協会編:道路橋示方書・同解説 編・Ⅱ鋼橋編, 丸善, 2002-3.
- 2)日本道路協会編:道路橋示方書·同解説 V耐震設 計編, 丸善, 2002-3.