京都大学工学部 学生員 〇西村 優希 京都大学大学院工学研究科 正会員 宇都宮 智昭

1. はじめに

浮体式洋上風力発電施設の構造安全性を検証する上で、暴風等の動揺を把 握することが極めて重要となる.そこで本研究では、解析コードとして米国 国立再生可能エネルギー研究所(以後 NREL とする)が開発した水平軸風車 用解析コード FAST¹⁾と MSC.Software 社が開発した汎用機構解析ソフト MSC.ADAMS に NREL が開発した風荷重計算コード AeroDyn とプラットフ オームにかかる荷重を計算するコード HydroDyn を組み込んだもの(以後, これを ADAMS とする)の2つを用いて、スパー型洋上風力発電施設の暴風 時動揺解析を実施する.なお、FAST、ADAMS のいずれも浮体式洋上風車に 対しては妥当性が検証されていないため、本研究にて暴風時における応答結 果の違いを検証する.

また、本研究では、スパー型浮体式洋上風力発電施設の係留索をバネ・質 点系でモデル化し、係留索の先端を2股にした形状のモデルでYaw 方向の剛 性がどれだけ高まるのか、また摩擦力の応答への影響についても検証を行う.

2. 解析モデル

本研究では,解析モデルとしてスパー型プラットフォームの上に定格出力 2MWのダウンウインド型風車が搭載されるもの(図1)を想定した.係留索の 本数は4本とし,初期水平張力300(kN)とした.本研究におけるプラットフ ォームの応答は浮面心(水面上の浮体の中心)からみたものである(図2).変 位の呼称も図2に示す.係留索の先端を2股にした形状を図3に示す.

3. 係留索のバネ・質点系モデルの検証

本研究では、係留索をいくつかの質点に分割し、質点の間をバネでつない だモデルで係留索を近似する.

呼び径 87(mm), 全長 408.2(m)のチェーンを 20 個の質点に分割し,線形バネでつないだ. 海底から浮体着鎖点までの高さを 84(m)とし,海底着鎖点と浮体着鎖点との水平距離 X(m)を変化させて重力のみを作用させて ADAMS を用いて動的に解析を行い,その時の浮体着鎖点に働く係留力の水平成分 Th(kN)を出力した. 出力された Th と, FAST・ADAMS 内の係留索による力の計算の際に用いられているカテナリー理論から得られる理論値²⁾を比較 し図 4 に示す.

図4より,バネ・質点系モデルはカテナリー理論とほぼ一致する水平張力 を発生しており,この点において妥当なモデル化であるといえる.

図4 理論値との比較

Yuki NISHIMURA, Tomoaki UTSUNOMIYA n.yuki@ay4.ecs.kyoto-u.ac.jp

4. バネ・質点系モデルによる風車の自由振動

表1,表2に示す各モデルで波・風がない状態でプラ ットフォームをYaw方向に10度回転させた位置を初期 状態とし,300秒間解析を行い,固有周期を計算した(表 3).なお,2股の係留索をFASTで計算する場合にはYaw 方向の付加剛性を入力することでこれを模擬する.本 研究で入力するYaw方向の付加剛性Kは次式で計算す る.

$K = Th \times L \times n$

(Th:係留索の水平張力,L:2股の部分の水平長さ, n:係留索の本数)

本研究ではTh = 300(kN), L = 8(m), n = 4(本)である.

表3の固有周期より2股でない係留索の場合はバ ネ・質点系モデルでもFASTのカテナリー理論を用いた 静的解析モデルとほぼ同様の剛性比が得られているが, 2股のバネ・質点系モデルでは,計算した付加剛性を入 力したFASTのモデルに比べて,摩擦なしの場合0.74 倍,摩擦ありの場合0.53倍の剛性しか得られなかった.

5. バネ質点系モデルによる暴風時動揺解析

表4に示す各モデルにて,外力条件として波がない 状態で x 軸方向に乱流強度 0.11,ハブ高さでの 10 分間 平均風速 56(m/s)の風を作用させ,同じく x 軸方向に有 義波高 8.9(m),有義波周期 12.4(s)の波を作用させて, 先端が 2 股の係留索を想定して 300 秒間解析を行った.

荷重が直接作用する (Surge, Heave, Pitch) 方向のプ ラットフォームの応答結果の時刻歴の標準偏差を表 5 に、3 方向のパワースペクトルを図 5 から図 7 に示す.

図 5 から図 7 より,これら 3 方向のパワースペクト ルはほぼ一致している.また,表 5 より 3 方向におけ る時刻歴の標準偏差を見ると 4 つの各モデルで大きな 差はない.つまり,FAST・ADAMS・バネ質点系モデ ルのどのモデルにおいても Surge, Heave, Pitch の 3 方向 でのプラットフォームの応答変位はほぼ同じ値をとる ということが確認できた.

参考文献

- National Renewable Energy Laboratory: FAST User's Guide, NREL/EL-500-38230,2005.
- O.M.Faltinsen: Sea Loads on Ships and Offshore Structures, Cambridge University Press, pp.257-265,1990.

表1 2股でない係留索を有するモデル

解析コード	係留索の解析方法	摩擦力	Yaw付加剛性
FAST	HydroDyn(カテナリー理論)	なし	なし
ADAMS	動的解析(バネ・質点系モデル)	なし	なし
ADAMS	動的解析(バネ・質点系モデル)	あり	なし

表2 先端が2股の係留索を有するモデル

解析⊐ード 係留索の解析方法 摩擦力 Yaw付加剛性 FAST HydroDyn(カテナリー理論) なし あり ADAMS 動的解析(バネ・質点系モデル) なし なし

表3 Yaw 固有周期

なし

あり

動的解析(バネ・質点系モデル)

ADAMS

2股でない係留索					
	FAST	バネ・質点系モデル(摩擦なし)	バネ・質点系モデル(摩擦あり)		
周期(s)	16.3	17.10	16.10		
剛性比	1	0.91	1.02		
2股の係留索					
	FAST	バネ・質点系モデル(摩擦なし)	バネ・質点系モデル(摩擦あり)		
周期(s)	9.4	10.90	12.90		
剛性比	1	0.74	0.53		

表4 解析モデル

解析コード	係留索の解析方法	摩擦力	Yaw付加剛性
FAST	HydroDyn(カテナリー理論)	なし	あり
ADAMS	HydroDyn(カテナリー理論)	なし	あり
ADAMS	動的解析(バネ・質点系モデル)	なし	なし
ADAMS	動的解析(バネ・質点系モデル)	あり	なし

表5 時刻歴の標準偏差

図5 Surge 方向のパワースペクトル

図6 Heave 方向のパワースペクトル

図7 Pitch 方向のパワースペクトル