第 V 部門 衝撃弾性波法に基づく道路橋 RC 床版の水平ひび割れ面の凹凸の影響を考慮した非破壊評価手法

大阪大学大学院工学研究科 学生員 〇前 裕史 正会員 鎌田 敏郎 正会員 内田 慎哉 大阪大学工学部 学生員 中山 和也 大阪大学大学院工学研究科 学生員 山本 健太 正会員 大西 弘志

1. はじめに

本研究では、道路橋 RC 床版の内部で発生する水平ひ び割れの凹凸形状を模擬した RC 供試体を作製し、凹凸 形状の違いが衝撃弾性波法により得られる周波数スペク トルに与える影響について把握するとともに、周波数解 析手法としてマルチテーパ法(以降, MTM と呼ぶ)を 活用し、凹凸による波の反射の影響を考慮した非破壊評 価手法に関する検討を行った。

2. 実験概要

2.1 供試体

供試体寸法は 1800mm×1800mm×200mm であり,表面 (1800mm×1800mm) 1 面において 4 ケースの凹凸形 状を設けた。1 ケースあたりのコンクリート表面での寸 法は,900mm×900mm である。供試体の一例を写真 1 に示す。実験では,図1に示す凹凸形状と,凹凸が無い 場合(版厚 200mm)の2 ケースを対象とした。

2.2 衝撃弾性波法による計測

弾性波は、凹凸を設けていないコンクリート表面の中 央部において、鋼球を打撃することにより入力した。波 の受信は、入力位置近傍に貼り付けた加速度センサによ り行った。

3. 解析概要

3 次元動的応答解析を用いて,水平ひび割れ面の凹凸 による波の反射状況の確認を行った。モデル寸法は 900mm×900mm×200mm,要素代表長さは約10mmとし た。境界条件は900mm×200mm(図2中の点線部分) の面内における節点の変位を全方向固定とした。

衝撃荷重は、モデル中央部(図2中の矢印)に半サイン波として入力した。出力位置は、入力位置より支持面 側へ 50mm 移動した点である。コンクリートの物性値は、 密度 2.2g/cm³、ポアソン比 0.2、弾性係数 30GPa とした。

4. 結果および考察

4. 1 実験で得られた周波数スペクトル

表1に実験で得られた FFT による周波数スペクトルを 鋼球直径ごとに示す。図中に示す矢印 (*f* 版厚) は、供試 体厚さに相当する理論上の縦波共振周波数である。凹凸

写真1 供試体の一例

図1 凹凸ありの場合の供試体断面図

図2 解析モデル

がある場合の鋼球直径 19.1mm での周波数スペクトルは, $f_{\ \bar{bulk} p p}$ の位置に明瞭なピークを確認できる。しかしながら, 鋼球直径が小さくなると, $f_{\ \bar{bulk} p p}$ 近傍の周波数成分が減衰 し,それよりも高い成分が相対的に出現している。これ に対して,凹凸が無い場合では,いずれの鋼球直径の場 合においても, $f_{\ \bar{bulk} p p}$ の近傍のみにピークの出現が確認で きる。したがって,使用する鋼球直径の大きさによって は,凹凸がある場合と無い場合の波の反射形態は,それ ぞれ異なることが明らかとなった。

4.2 解析による凹凸の影響の把握

表2に鋼球直径が11.0mm での波の伝播状況をそれぞ

Hirofumi MAE, Toshiro KAMADA, Shinya UCHIDA, Kazuya NAKAYAMA, Kenta YAMAMOTO and Hiroshi ONISHI

表2 MTMによる周波数スペクトル

れ示す。ここでは、衝撃入力位置の断面(図2の a-a 断面)における、49、90および121µs経過した時点での加速度分布を、コンター図として表している。凹凸が無い場合では、コンクリート中を球面波として伝播し(経過時間49µs)、90µs後には底面で反射、その後、反射した波が球面波として衝撃入力面側へ伝播(経過時間121µs)している。これに対して、凹凸がある場合は、底面において反射した波が、凹凸により同心円上に伝播してない。したがって、解析結果からも、凹凸による波の反射の違いがあることがわかった。

4.3 周波数スペクトルによる改善

4. 2から明らかな通り,道路橋 RC 床版で発生する 水平ひび割れを衝撃弾性波法により得られた周波数スペ クトル上のピークから評価することを想定した場合,ひ び割れ面の凹凸の影響により,ひび割れを検出すること が困難になるケースがあると考えられる。そこで,表1 において,凹凸の影響があると考えられる鋼球直径 11.0 および 12.8mm の時刻歴応答波形に対して MTM を適用 し,周波数スペクトルの改善を試みた。図3に MTM に より得られた周波数スペクトルを示す。いずれの周波数 スペクトルにおいても,FFT による周波数スペクトル (表1参照)と比較すると,供試体表面と底面での多重 反射に相当するピーク周波数が出現し,それよりも高い 周波数成分(約 10~30kHz)が相対的に減衰しているこ

周波数成分(約 10~30kHz)が相対的に減衰しているこ とがわかる。これより, MTM は, 凹凸の影響に伴う波 の反射の影響を小さくすることが可能である。

5. まとめ

以下に本研究で得られた結論を示す。

- 1) 道路橋 RC 床版に発生する水平ひび割れの凹凸を模 擬した供試体において、衝撃弾性波法を行った結果、 供試体表面と底面での多重反射に相当する縦波共振 周波数が減衰し、共振周波数よりも高い周波数領域 の成分が出現するといった凹凸による波の反射の影 響を周波数スペクトル上において確認した。
- 2) 周波数スペクトル上で波の反射の影響が確認できる 場合においても、得られた波形に対してマルチテー パ法による周波数解析を行うことにより、供試体上 面と反射源との間で多重反射する波の成分を明瞭に 出現させることが可能である。

謝辞

本研究は,国土交通省委託研究事業 新道路技術会議 技術研究開発プロジェクト「道路政策の質の向上に資す る技術研究開発」の援助を受けて行ったものである。こ こに記して謝意を表します。