第Ⅱ部門

都市気象を表現する力学的ダウンスケーリングに関する研究

京都大学工学部	学生員	○藤井	嵩大
京都大学防災研究所	正会員	田中	賢治
京都大学防災研究所	正会員	小尻	利治
京都大学防災研究所	正会員	浜口	俊雄

1.本研究の概要

地球温暖化、あるいは気候変動で日本の水循環がど う変化するのかという問題について、地域規模での影 響については推定されていない。時間的、空間的に非 常に小さいスケールでは、陸面の状態が大気に及ぼす 影響を無視できなくなる。しかし、高解像化が進む気 象予測モデルにおいて、都市の陸面過程は、未だに簡 便な手法を用いているのが現状である。そこで、本研 究では陸面過程を詳細に考慮できる大気陸面結合モデ ル CReSiBUC を用いて長時間解析を行い、モデルが将 来気候予測に耐えうる精度を有しているかを検証した。 対象地域は関東地方で、対象年は2003・2004年の夏 (7~8月)、比較要素は気温である。

2. 大気陸面結合モデル CReSiBUC

CReSiBUC は、雲解像の非静力学数値気象モデル CReSS(Cloud Resolving Storm Simulator)に陸面状態 を詳細に考慮できる陸面過程モデル SiBUC(Simple Biosphere including Urban Canopy)を導入したもの である。

CReSS¹⁾は名古屋大学地球水循環研究センターで開 発され、時間的・空間的に小さなスケールの予測を目 的に作られたモデルである(図1)。積乱雲の発達過程 のような対流現象を詳細に表現できる。

≻Wind speed (u,v,w)(m/s) Specific humidity (kg/kg) ➢Precipitation particle rain, snow, ice, ... (kg/kg)

図1 CReSS の概要

SiBUC²⁾は京都大学防災研究所水資源センターで開

発されたモデルである(図2)。地表面状態を緑地・都 市・水体の3つのカテゴリーに分類しており、これら3 つのサブモデルから構成されている。

図2 SiBUC の概念図

3. 境界条件の取り扱い

初期値及び境界値に用いたデータは以下のとおりで ある。

i)メソ領域客観解析データ(MANAL):メソ領域客 観解析地域における地上観測及び高層観測などの観測 データや衛星の観測データ等から、3次元的に規則正し く分布する格子天井に観測された気象要素の値である。 その気象要素とは、海面気圧、高度、気温、相対湿度、 東西風、南北風である。格子系はランベルトで、空間 分解能は北緯30度、東経140度で10kmとなっている。

ii) 土地利用: グリッド内における土地利用面積率 は、空間分解能 100m で 15 分類されている国土数値情 報(KS-202)から7つのカテゴリー(水体、混合林、草地、 畑地、水田、裸地、都市域)に再分類した土地利用デー タセットをもとに、その7種類の各土地利用が5km四 方のグリッドにおいて占める面積率を与えた。

iii) 土壌分類:土壌タイプの情報としては、FAOの Digital Soil Map of the World のデータ(空間分解能約 10km)を使用し、オリジナルの 1000 種類以上の分類 から砂、ローム、シルトの構成比に基づいて11種類に

再分類したデータセットを用いた。

iv)海面温度(SST): NOAA/NASA AVHRR Oceans Pathfinder SST data の下降軌道(夜間の観測)の1 ヶ月平均値を用いた。(空間分解能 4km)

v) 植生指数(NDVI):緑地におけるキャノピーカバ
一率を推定するために USGS が提供する、NOAA 衛星
の AVHRR センサから得られた空間分解能約 1km の
10day composite NDVI データを使用した。また、BISE
法を適用して、雲の影響を除去した。

vi)人工排熱量(AH):首都圏における人工排熱による顕熱の影響を考慮するために、夏場における典型的な日変化パターンとして、図3に示すデータを用いた。

図3人工排熱量の分布図

vii)屋根面高度分布:首都圏におけるビル群などの 建造物の高度差の様子を表現するために、国土地理院 が提供する地理情報システム(GIS)を元に、東京都にお ける範囲で作成した高度分布図(図4)を用いた。

図4 屋根面高度分布図

viii) 土壌水分量: SiBUC の単独計算を行い、年ごとの土壌水分量を計算し、豊水年・渇水年を考慮した(図5)。

図5 土壌水分量の分布図

4. 長期計算によるバイアス検出

CReSiBUCの出力の比較要素は気温である。比較手 法としては、ダウンスケーリングした CReSiBUCのメ ッシュ内にあるアメダスの観測値と、そのメッシュの 値を直接比較する方法を取った。また、気温に関して、 日最高気温と、日最低気温を比較した。相関図を表1 に示す。

表1 日最高気温(左)と日最低気温(右)の相関係数

AMeDAS 地点	相關係数	AMeDAS 地点	相關係数	
東京	0.728	東京	0.764	
14.15	0.782	維馬	0.765	
府中	0.700	麻中	0.730	
青梅	0.601	青梅	0.711	
八王子	0.737	八王子	0.687	
80 IN	0.749	模拟	0.743	
千葉	0.681	千葉	0.725	
動物	0.730	動構	0.739	
さいたま	0.762	さいたま	0.766	
越谷	0.727	施谷	0.760	
全地点	0.605	全地点	0.613	

(a) 2003 年

AMeDAS 地点	相關係數	AMeDAS 地点	相関係
東京	0.726	東京	0.62
練馬	0.728	練馬	0.64
府中	0.461	府中	0.60
青梅	0.379	青梅	0.63
八王子	0.672	八王子	0.68
横浜	0.690	横浜	0.631
千葉	0.606	千葉	0.56
8048	0.671	船橋	0.641
さいたま	0.465	さいたま	0.696
越谷	0.613	越谷	0.658
全地点	0.432	全地点	0.591

(b)2004年

5.<u>結論</u>

本研究では、CReSiBUC を用いて関東地方のダウン スケーリングを行い、2003 年及び 2004 年の夏の長期 シミュレーションを行った。その結果、沿岸部では精 度がよく、内陸部で精度が悪くなることが示唆された。

今後、気温の算出方法を変えての比較や、統計の絶 対数が少ないので、他の年でも比較を行う必要がある。 また、降水量についての比較を行う等して、CReSiBUC の性能を調べる必要がある。

参考文献

 1)坪木和久・榊原篤志:CReSS ユーザーズガイド第二版, 2001.

2) Kenji Tanaka: Development of the new land surface scheme SiBUC commonly applicable to basin water management and numerical weather prediction model doctoral dissertation, Kyoto University, 2004.