第十部門 中空式二重鋼管・コンクリート合成深はりの曲げせん断特性

> 神戸市立高専専攻科 学生員 清水優,神戸市立高専 正会員 上中宏二郎

1. はじめに

中空式二重鋼管・コンクリート合成部材(CFDT)とは, 径の異なる二つの鋼管を同心円上に配置して、両の間の みにコンクリートを充填した構造である. このような構 造形式により,従来のコンクリート充填鋼管部材¹⁾(以 下, CFT と称する)と比較して軽量となる利点を有す る. 著者らは今日まで, の中心圧縮特性ならびに曲げ特 性に関する系統的な検討を行ってきた²⁾⁻⁴⁾.そこで、本 研究では、既報⁵にさらに4体のCFDT深はり供試体を 加え、主にD//D。がCFDTのせん断特性に与える影響に ついて実験的に検討することを目的とする.

2. 実験方法

外鋼管径 D_a=160mm, 軸方向長さ H=420mm を一定 とし、変数である内鋼管径 Diは、0(CFT), 37.5, 75.0 およ び112.5mm (表-1参照)の4種類, 鋼管厚 t_i, t_oは 1.0 mm, 1.6mm および 2.3mm の 3 種類の組合せで,合計 12 体の供試体を使用した.載荷方法は図-1に示すように, 供試体中心に左右対称の荷重を与え,等しいせん断力を 作用させるものとした. 測定項目は、内鋼管ならびに外 鋼管にそれぞれ、10箇所の2軸ひずみゲージを貼付し た. さらにスパン中央には変位計を設置した.

3. 実験結果と考察

(1)破壊形式 CFDT および CFT の破壊形式を写真-1 に 示す. CFT 供試体の破壊形式は載荷点下部付近で鋼管 が破断し、その後ウェブコンクリートがせん断破壊する ものであった.一方, CFDT においてはウェブコンクリ ートの圧縮破壊が起こった. D/D。の大きいものは、載 荷初期からウェブコンクリートの圧縮破壊が顕著であり その後,鋼管が降伏に至った.

図-2 に荷重-鉛直変位曲線を示す. (2)変形特性 D_i/D_o<0.47程度までなら、せん断変形性能の著しい低下 は見られない.しかしながら D/D。=0.70の供試体では、げ強度比と(D/D。)の関係を示したものである.ここで V. 他の供試体と比較して極端な強度低下が見られる.これ は式(1)によって算定した?. は部材厚が薄いために載荷初期においてコンクリートが 圧縮破壊し、断面剛性が低下することによるものである と考えられる.

Masaru SHIMIZU and Kojiro UENAKA

図-1 載荷方法

破壊形式 写直-1

$$V_{u} = \frac{0.24 f_{c}^{'2/3} (1 + (100 p_{w})^{1/2}) (1 + 3.33 r/d) b_{wd}}{(1 + (a/d)^{2})}$$
(1)

ここで, $f_{c'}$: コンクリート強度(MPa), b_{w} : ウェブ幅, d: (3)終局強度 図-3 はせん断強度比と D_i/D_o,および,曲 有効高さ,r:載荷幅(=100mm),a: せん断スパン長,p_w= *A*_s/*b*_w*d*である. また, *M*_uは鋼管とコンクリートの応力 -状態を全塑性と仮定し、コンクリートの引張強度を無視 した純曲げ強度であり、次式の通りである.

$$M_{u} = \frac{2k f_{c}'}{3} (R_{o}^{3} \cos^{3} \alpha_{o} - R_{o}^{3} \cos^{3} \alpha_{i}) +4 f_{sy} (R_{o}^{2} t_{o} \cos \alpha_{o} + R_{i}^{2} t_{i} \cos \alpha_{i})$$
(2)

図-3(a)より,実験値は算定強度を用いて,一致ある -いは安全側であることが確認された.また、D_i/D_o≦0.47 では、内鋼管がせん断補強筋として働いていることが窺 え, *V*_{exp}/*V*_uは上昇する傾向にある. 図−3(b)でも実験値 は算定強度と比較して安全側に評価されているが, D_i/D_o=0.70となるとコンクリート断面積が減少する影 響が大きく、 M_{exp}/M_{u} は著しく低下している.これは、 部材厚が薄いために載荷初期においてコンクリートが圧 -縮破壊を起こし、断面剛性が著しく低下したためである と考えられる.

(4)応力状態 内外鋼管に貼付したひずみゲージから, 弾塑性状態の平面応力状態における Prandtl-Reuss の構成 則を用いて二軸応力状態を求めた. 図-4 は外鋼管曲げ 引張側の二軸応力の関係である. ここで破線は Von Mises の降伏曲線を示している. 同図より $D_i/D_a = 0.70$ のみが載荷初期から圧縮側へと流動していることがわか る. これは部材厚が薄いために、上下方向に圧縮力を受 けるリングのようになっているためであると考えられる.

4. まとめ

- (1)曲げせん断力を作用させることによる破壊の形式は、1) 日本建築学会:コンクリート充填鋼管構造設計施工指針、1997 CFT 供試体では鋼管の曲げ引張破壊であり、内径・ 外径比が大きくなるに従ってウェブコンクリートが 圧縮破壊するモードへと変化した.
- (2) D₁/D₂ ≦0.47 の変形性能は CFT でのそれとほぼ同等で 3) 上中宏二郎, 鬼頭宏明, 後藤亮太: 中空式二重鋼管・コンクリー あった. 一方, D_i/D_o=0.70 では, 断面剛性の低下に より, 著しく低下した.
- (3) せん断強度は、二羽の式を用いて概ね一致あるいは 4) Uenaka, K., Kitoh, H. and Sonoda, K.: Concrete Filled Double Skin 安全側に評価できることがわかった.
- (4) 実験曲げ強度と純曲げ強度(M_u)を比較したところ, D_i/D_o≦0.47 では概ね一致, あるいは安全側に評価で 5)上中宏二郎, 清水優, 鬼頭宏明: 二重鋼管・コンクリート合成深 きることがわかった.一方, D//D。=0.7 では、上記 (1)の理由により、算定強度を大幅に下回った.
- (5)外鋼管引張側の応力状態は*D*_i/D_a≦0.47 では、従来の CFT とほぼ同様であった. また D/D=0.70 では, 載 荷初期から圧縮側に流動していた. これは上下方向 に圧縮力を受けるリングのように挙動しているため

<u>表 - 1</u> 実験結果と算定強度							
No.	Tag	D _i /D _o	実験値			算定強度	
			P _{exp} (kN)	V _{exp} (kN)	M _{exp} (kNm)	V_u (kN)	M _u (kNm)
1	S10-000	0.00	213.6	106.8	17.1	82.0	11.5
2	S10-375	0.23	197.0	98.5	15.8	78.0	13.6
3	S10-750	0.47	175.4	87.7	14.0	62.3	14.6
4	S10-1125	0.70	80.4	40.2	6.4	43.5	16.6
5	S16-000	0.00	390.0	195.0	31.2	91.6	19.4
6	S16-375	0.23	391.0	195.5	31.3	79.6	21.3
7	S16-750	0.47	347.9	174.0	27.8	64.8	23.8
8	S16-1125	0.70	142.1	71.1	11.4	46.2	25.2
9	S23-000	0.00	464.5	232.3	37.2	100.7	24.7
10	S23-375	0.23	497.8	248.9	39.8	88.5	26.2
11	S23-750	0.47	460.6	230.3	36.8	72.8	30.0
12	S23-1125	0.70	84.3	42.1	6.7	52.7	34.7

図-4 外鋼管曲げ引張側の応力状態(圧縮を正)

と考えられる.

参考文献

- 2) 上中宏二郎, 鬼頭宏明, 園田恵一郎:二重鋼管合成短柱の圧縮特 性に関する実験的研究,鋼構造論文集,日本鋼構造協会, Vol.14, No. 53, pp. 67-75, 2007.
- ト合成部材の曲げ特性, コンクリート工学論文集, 日本コンクリ ート工学協会, Vol. 17, No. 3, pp. 45-53, 2006.
- Tubular Members subjected to Bending, Steel and Composite Structures, Techno-Press, Vol. 8, No. 4, pp. 297-312, 2008.
- はりの曲げせん断実験, コンクリート工学年次論文集, 日本コン クリート工学協会, Vol. 30, No. 3, pp. 1321-1326, 2008
 - 6) 二羽淳一郎: FEM 解析に基づくディープビームのせん断耐 荷力評価式,第2回RC構造のせん断に問題に対する解 析的研究に関するコロキウム論文集、日本コンクリート 工学協会, pp. 119-128, 1983.