第V部門

鉄筋の付着状況が ASR 劣化したはり部材の耐荷性能に及ぼす影響

| 立命館大学大学院 理工学研究科 | 学生員 | 〇山村 | 智・長尾 篤樹  |
|-----------------|-----|-----|----------|
| 立命館大学 理工学部      | 正会員 | 児島  | 孝之・岡本 享久 |
| (株)国際建設技術研究所    | 正会員 | 葛目  | 和宏       |

# 1. はじめに

近年, ASR によって過大な膨張が生じた橋脚の梁部分 において鉄筋の曲げ加工部に破断を生じた事例が認めら れている。しかしながら ASR 劣化を生じた構造物に対 する維持管理においては,鉄筋破断の有無や内部への劣 化の進行を評価する適切な診断手法が確立されていない のが現状である。さらに ASR 膨張による鉄筋の破断, 付着・定着不良により構造物の耐力低下が生じ,構造上 の安全性に支障をきたす恐れもあると考えられ, ASR 劣 化が過度に進展している構造物の耐荷性能を評価するこ とが急務となっている。

そこで本研究では道路橋橋脚梁部分を対象構造物とし 反応性骨材を用いた梁供試体を作製し,ASR により引き 起こされる可能性のあるスターラップの破断や主筋の付 着・定着不良がはりの曲げ耐荷性状に及ぼす影響につい て実験的に検討した。

## 2. 実験概要

ASR 劣化させた梁供試体の載荷試験を行い,鉄筋破断, 付着・定着不良が生じている鉄筋コンクリート構造物の 耐荷性能を健全な供試体と比較し検討した

(1) 梁供試体

| 表─Ⅰ 供試体要因 |        |        |        |     |  |  |  |
|-----------|--------|--------|--------|-----|--|--|--|
| /11.=-*   |        |        | 付着状況   |     |  |  |  |
| 供試休       | コンクリート | 鉄筋     | 主鉄筋,   | a/d |  |  |  |
| ILL       |        |        | スターラップ |     |  |  |  |
| No.1      | ゆる     | 健全     |        |     |  |  |  |
| No.2      | 低土     |        | 健土     | 2.1 |  |  |  |
| No.3      | ASR    | 人ターフッフ | タイプ I  |     |  |  |  |
| No.4      | 劣化     | HXEI   | タイプ II |     |  |  |  |

梁供試体は 150×300×1400(mm)の計 4 体であり,梁供 試体図を図-2 に,供試体要因を表-1 に示す。梁供試体 に使用した鉄筋は,引張側鉄筋に D13 を 2 本(鉄筋比 0.64),圧縮側鉄筋には D10 を 2 本である。スターラップ には D6 を 150(mm)間隔で配置した(せん断補強筋比 0.28)。 図-1 に示すようにせん断補強筋下部曲げ加工部破断およ び主鉄筋,スターラップの付着切れをグリスとビニール で2 パターン(タイプ 1:30% タイプ2: 50%)再現した。また ASR 劣化した供試体膨 張量が3000µに達した時 点で載荷試験を実施した。



## (2) 載荷試験方法

図-2 に梁供試体ゲージ貼付け位置を示す。供試体は油 圧式載荷試験機で載荷し,支持スパン 1200mmの対称 2 点載荷とした。ひび割れ発生を確認するために供試体表 面(下面から 35mmの位置)に π ゲージを貼り付けた。ま た圧縮縁および引張縁のひずみを測定するためにコンク リートゲージを貼付け,上面,下面のコンクリートひず みから梁の回転角を算出した。測定項目として載荷荷重 (ひび割れ発生荷重,降伏荷重,最大荷重),主鉄筋ひず み(圧縮側,引張側),スターラップひずみ,供試体中央 部たわみとした。



- 図−2 梁供試体図およびゲージ貼付け位置図
- 5. 実験結果および考察(シリーズ2)
- 5.1 載荷試験前各梁供試体劣化状況
  - (1) ひび割れ状況

No.3~4 において ASR 劣化による亀甲状のひび割れが 発生していた。0.2mm 以上のひび割れは軸方向鉄筋沿っ て卓越している結果となった。

# (2) 各梁供試体膨張量

図-3 に膨張量の経時変化を示す。No.3~4 において ASR 膨張により膨張量は増加傾向を示し、各供試体で約

Satoshi Yamamura, Atsuki Nagao, Takayuki Kojima, Takahisa Okamoto, Kazuhiro Kuzume



3000µ程度の膨張量を示している。

5.2 載荷試験結果

(1) 破壊形状



図-4 梁供試体載荷試験後破壊状況図

| 表-2  載何試験結果およひ計算 |
|------------------|
|------------------|

| /#+≣=# | 計算値        |                   | 実験値               |            |                   | 5001亩             |       |
|--------|------------|-------------------|-------------------|------------|-------------------|-------------------|-------|
| 供試体    | Pcr*       | Py*               | Pu*               | Pcr*       | Py*               | Pu*               | 吸坡    |
| 评      | $^{1}(kN)$ | <sup>2</sup> (kN) | <sup>3</sup> (kN) | $^{1}(kN)$ | <sup>2</sup> (kN) | <sup>3</sup> (kN) | Nº LL |
| No. 1  | 42.1       | 85.3              | 90.6              | 42. 1      | 99. 9             | 125.4             | 曲げ    |
| No. 2  | 42. 1      | 85.3              | 90.6              | 30. 4      | 105.8             | 111.7             | 曲げ    |
| No. 3  | 42.1       | 85.3              | 90                | -          | 60.5              | 62.6              | せん断   |
| No. 4  | 42.1       | 85.3              | 90                | -          | 45.6              | 47.2              | せん断   |

Pcr<sup>\*1</sup> ひび割れ発生荷重 Py<sup>\*2</sup> 降伏荷重 Pu<sup>\*3</sup> 終局荷重

図-4 に No.1~4 梁供試体の載荷試験後の破壊状況を示 す。表-2 に計算耐力と実験値の比較を示す。健全供試体 No.1 においては引張主鉄筋の降伏後,曲げ破壊で終局に 至った。No.2 梁供試体においても曲げ破壊で終局に至っ たが主鉄筋の降伏後すぐに終局に至った。

終局荷重において No.1 と No.2 では 10%程度の差が生 じていた。この終局荷重の差の要因として圧縮側主鉄筋 の終局時のひずみが No.1 に比べ No.2 では低いひずみで 終局に至っていることから圧縮縁のコンクリート強度が 低下していたために終局荷重に差が生じたものと考えら れる。

No.3,4 梁供試体において,共に破壊形式は No.1,2 と異なりせん断破壊で終局に至った。最大荷重も健全である

No.1 梁供試体と比較し No.3 で 50%の低下, No.4 におい ては約 65%低下であり付着・定着不良の影響が耐力に与 える影響が大きいことが考えられる。また, No.3,4 で付 着切れの程度の違いにより終局荷重にも差が見られた. この要因として載荷時に生じたせん断ひび割れの角度が 各供試体で異なっていたため, せん断ひび割れ面の大き さ, せん断ひび割れを横切るスターラップの本数の違い が終局荷重に影響したと考えられる.

### (2) 荷重-変位関係

図-5 に荷重-たわ み関係を示す。No.1 ではたわみは 27mm であったのに対し No.2 では約半分の 11mm であった。これ は No.2 梁供試体の圧 縮側主鉄筋のひずみ が No.1 梁供試体のひ



ずみより低い値で圧縮縁圧壊によって終局していること から圧縮縁のコンクリート強度が低かったため、たわみ が No.1 と比べ低くなったと考えられる。No.3,4 では付 着・定着不良の影響により供試体の変形は端部に局所化 していたため供試体中央部のたわみは殆ど伸びなかった。

## (2) 付着・定着不良による構造物の安全性への影響

付着・定着不良を模擬した No.3,4 において耐力の大幅 な低下および破壊形式の違いが示された。既往の研究で は主鉄筋の付着・定着不良の領域の違いで耐力低下に影 響があることが言われており、定着部、支点付近の付 着・定着不良は耐力を大きく低下させるという結果が報 告されている<sup>1)</sup>。本実験結果も同様の傾向が示され, ASR 劣化が進展し鉄筋の付着・定着不良が生じている場 合構造物の耐力低下,破壊形式に違いが生じていること から耐荷性能に大きく影響するといえる。

#### 6. まとめ

曲げ破壊で終局に至る構造物の場合,ASR 劣化による 付着・定着不良が構造上の安全性に大きく支障をきたす 可能性があるといえる。

参考文献

 澤部純浩,上田尚史,中村光,李相勲:軸方向鉄筋の定着不良を 生じたせん断破壊する RC はりの挙動解析,コンクリート構造物 の補修・補強・アップグレード論文報告集,第4巻, pp.409-416, 2004