第 Ⅲ 部門 遮水壁に用いるソイルベントナイト混合体の動的特性

京都大学工学部	学生員	○栗原	太志
京都大学大学院		高井	敦史
京都大学大学院	正会員	勝見	武
京都大学大学院	正会員	乾	徹
京都大学大学院	フェロー	- 嘉門	雅史

1. はじめに

既設構造物直下では汚染土壌の除去や積極的な浄化が困難であるため、地中連続遮水壁を用いた原位置封 じ込め工法が有効である。筆者らは、ベントナイトと原位置土の混合土であるソイルベントナイト混合体 (SBM)を遮水壁として用いる TRD 工法を適用したソイルベントナイト地中連続遮水壁工法を開発し、遮 水性能やその耐化学性を明らかにしてきた¹⁾。SBM は他の遮水壁材料と比較して変形追従性の点で優れるも のの剛性が低い材料であるため、供用中に地震力などの外力が作用した場合にも過剰な変形や亀裂が発生せ ず、遮水壁としての機能が長期にわたって確保されることを検証する必要がある。本研究ではソイルベント ナイト地中連続遮水壁の適用に際して課題となっている上記の点を明らかにすることを目的とし、室内再構 成 SBM 試料を対象とした圧密非排水動的繰返し三軸試験と遠心模型実験を実施し、繰返し載荷を受けた際 の SBM の剛性の変化と変形特性、および液状化地盤内における挙動と遮水壁の損傷の発生状況を調査した。

2. 実験方法

2.1 供試体の作製 本工法の試験施工サイトから採取した関東ロームと砂礫の4.75 mm ふるい通過分を4:25 の質量比で混合した混合土と Na 型ベントナイトを使用した。混合土の混合比は当該サイトのそれぞれの土

の層厚に基づいて決定した。自然含水比状態の混合土のフロー値(JIS R 5201 に準拠)が 150 mm になるように 10%濃度ベントナイトスラリーを適量添加した後、粉 体ベントナイトを 100 kg/m³を添加し、混合した。

2.2 繰返し三軸試験 SBM をモールドに充填し、直径 5 cm 高さ 10 cm に成形した後、 200 kPa で予備圧密を行った。予備圧密は約 1 週間行い、排水量と圧縮が落ち着くの を確認した時点で繰返し載荷を行った。供試体の湿潤密度と繰返し応力比を表-1 に

示す。なお、繰返し三軸試験では上記の 4.75 mm ふるい通過分の混 合土による SBM に加え、0.85 mm ふるい通過分の混合土から作製し た SBM についても試験を行った。これは後述の遠心模型実験の模 型スケールの関係上、最大粒径が 0.85 mm ふるい通過分に限定され たことから、最大粒径の違いによる影響を比較するためである。 2.3 遠心模型実験 遠心模型の断面図を図-1 に示す。珪砂 7 号を使 用し、水中落下法により相対密度 40%で飽和砂地盤を作製した。50 G 場で実験を行い,粘性を水の 50 倍に調整した液体を脱気したもの を間隙水として使用した。遮水壁は通常,難透水層まで打設すること から,土槽の底部に難透水層を模擬したアクリル板に 11 mm 幅の溝を 設け,ここに別途作製した 11 mm 厚 (55 cm 厚相当)の SBM 遮水壁 を設置した。SBM 遮水壁は 0.85 mm ふるい通過分の混合土を用いて 2.1 に示す要領で作製した SBM を型枠に充填、60 kPa で圧密したもの を成型した。間隙水圧計、加速時計を図-1 に示す位置に取り付け、砂

	表-1 試験条件				
	最大粒径	繰返し	湿潤密度		
	(mm)	応力比	(Mg/m^3)		
ſ		0.229	1.89		
	4.75	0.216	1.89		
		0.205	1.90		
		0.240	2.04		
	0.85	0.235	2.03		
		0.224	2.00		

Futoshi KURIHARA, Atsushi TAKAI, Takeshi KATSUMI, Toru INUI, and Masashi KAMON

地盤内部の間隙水圧と遮水壁内部の間隙水圧がほぼ等しくなるまで 50 G の遠心力載荷によって圧密を行った。その後、周波数 20 Hz、 25 cycles の正弦波で地震動を与えた。入力した地震動に対する土槽 の応答加速度を図-2 に示すが、最大加速度は 200 gal 程度であった。

3. 実験結果とその考察

3.1 繰返し三軸試験結果 図-3 に繰返し三軸試験から得られた有効 応力経路の代表例(応力比 0.229 のケース)を示す。全てのケース で過剰間隙水圧がほとんど発生せず、有効応力経路は載荷開始段階 からほとんど変化せず定常となっている。図-4に同じケースの軸ひ ずみー偏差応力関係を示す。載荷回数の増加に伴ってひずみが蓄積 され大きな変形を示すことがわかる。図-5 に軸ひずみ両振幅 5%を 破壊と定義し、破壊に至る繰返し回数と応力比の関係を示す。最大 粒径が 4.75 mm の供試体と最大粒径が 0.85 mm の供試体の結果 にはほとんど相違はなく、遠心模型実験において最大粒径を小 さくすることによる剛性・・変形特性への影響はないといえる。 3.2 遠心模型実験結果 加振前後で SB 遮水壁天端の水平位置 と地表面の高さを測定し、水平変位と加振による地表面の沈下 量を評価した。沈下量の測定地点を図-6に示す。水平方向には 有意な変位は発生しなかった。沈下量の測定結果を図-7に示す。 液状化が発生した周辺地盤は大きく沈下している一方で、遮水 壁も自身の沈下と周辺地盤による連れ込み沈下の影響により実 スケールで35~40 cmの沈下を起こした。しかしながら、周辺 地盤に比べると沈下量は小さく、遮水壁自体にも損傷は確認さ れなかったことから、遮水壁の機能は維持すると考えられる。 図-8に土槽、砂地盤、遮水壁の応答加速度から求めたフーリエ スペクトルを示す。土槽、砂地盤、遮水壁ともに卓越する振動 数は同じであることから遮水壁と砂地盤は一体となって振動し ているといえ、局所的な損傷が発生しなかったと考えられる。 謝辞:本研究の実施にあたっては、ライト工業(株)荒木 進氏、

(プロトタイプ)

杉山好司 氏、および京都大学防災研究所 飛田哲男先生、清水博樹技術室主任に多大なご協力をいただいた。 【参考文献】

1) Kamon, M., Katsumi, T., Inui, T., Ogawa, Y., and Araki, S. (2006): Hydraulic performance of soil-bentonite mixture barrier, *5ICGE Environmental Geotechnics*, H.R. Thomas, ed., Thomas Telford Publishing, London, pp.733-740.