第Ⅲ部門 珪藻泥岩の三軸圧縮試験供試体の変形帯の観察

京都大学 京都大学大学院 京都大学大学院

1.はじめに

地盤材料の変形局所帯は、従来から研究されてきたせ ん断帯(shear bands)と圧縮帯(compaction bands)に大別され る^{''}。compaction bands とは、最大圧縮主応力方向に対し て垂直または極めて垂直に近い形で発生する水平または 低角度な変形局所帯であり、大きな体積圧縮ひずみの発 生を伴うひずみの変形局所帯を言う。実地盤での圧縮帯 の発生は想定外の地盤沈下の原因となり得る上、周囲と 比べ間隙の減少による透水係数の低下が報告されており、 流体の流れを妨げる障害となり得る。一方、供試体レベ ルでの圧縮帯の発生は、高拘束圧条件下における多孔性 砂岩の排水三軸圧縮試験で確認されており²⁾、貝殻混じ り砂などの結合力を有する人工材料の圧縮試験でも圧縮 帯の生成が報告されている。一方、能登珪藻泥岩は有 効拘束圧のレベルに応じて様々な破壊形態を呈し、特定 の拘束圧条件下では一次元的な圧縮変形をすることが報 告されている 4,5,6 本研究ではこの珪藻泥岩を用いて 排水三軸圧縮試験を行い、PTV による供試体表面のイメ ージアナリシスとμフォーカス X 線 CT を用いた供試体 内部の密度分布の可視化から変形帯を観察する事を目的 に実験を行った。

2. 圧密排水三軸試験

実験試料として用いた珪藻泥岩は珪藻の遺骸と粘土を 主体に一部火山灰が堆積して形成した、 多孔質軟岩で ある。脆性的な変形特性を持つが練り返し作用を与え ると強度は低下し、粘性が増加する。未風化、不攪乱、 飽和状態を満足した状態での採取が可能であり、さら に均一性が高く再現性にも富むという理想的な自然材 料である。採取した試料は堆積方向に留意し 4×4× 8cm の四角柱に整形した。供試体は試験機に設置した後 に脱気水により飽和化した。各ケース毎に定めた有効 拘束圧で圧密を行い、その後軸ひずみ速度 0.01%/min で軸ひずみ 20%まで軸圧縮した。0.5、1.0、2.0(MPa)と、 三種類の有効拘束圧で実験を行った。軸差応力~軸ひず み関係、軸ひずみ~体積ひずみ関係を図 1、図 2 に示す。

Axial Strain(%) 図1: 軸差応力~軸ひずみ関係 図2: 軸ひずみ~体積ひずみ関係 図1 では、拘束圧が高くなるに従って応力~ひずみ関係 の折れ曲がり点での軸差応力が小さくなる傾向にある。 またケース CD2 ではひずみ軟化が、ケース CD4、CD6 ではひずみ硬化が見られる。図2 では全てのケースにお いて体積ひずみが単調増加しており、軸ひずみに対する 体積ひずみの急増などは見られない。

3.PTV によるイメージアナリシス

試体側面に発生したひずみを定量 的に計測するために、メンブレンに 2mm 間隔でターゲットを描き、固定 した CCD カメラで圧密排水三軸試 験中に軸ひずみ 0.5%毎に撮影し(図

3)、得られた画像を二値化して、粒子追跡法を用いてひ ずみを評価する方法。また、メンブレンと供試体の追従 性を確認するために、供試体に直接 2.5mm 間隔のメッシ ュを書き込み、試験の前後でデジタル写真を撮影し、格 子点座標の変化からひずみを定量化した。

4.µ フォーカス X 線 CT

本研究で用いた X 線 CT 装置はµフォーカス機能に より、画像鮮鋭度を落とすことなく高拡大率条件で撮 影することができる。供試体整形直後に試験前の状態 を撮影し、試験後の供試体を同じ条件で撮影した。CT スキャンの条件は管電圧 130kV、管電流 200µA、 FCD468mm、FID885mm、拡大率 2.837、スライス厚 0.2mm、一画素サイズ 0.06mm である。

5.象解析結果

図 4~6 に PTV による供試体表面のひずみ(上段:せん 断ひずみ γ 、下段:体積ひずみ ϵ_v)分布を示す。体積ひ ずみは正が圧縮で負が膨張である。ひずみ分布図を見る と、供試体に直接格子を書き込んだ場合の解析結果も、

kosuke NAKASHIMA, Yosuke HIGO, Sayuri KIMOTO, Fusao OKA, Hirofumi OTA, Taisuke SANAGAWA

平成20年度土木学会関西支部年次学術講演会

供試体写真による画像

front

side

PTV 画像

side

front

(a)

(b)

図8 ケース CD4 試験前後の CT 画像

PTV 画像 供試体写真による画像 front side front side 0.00 0.05 0.10 0.15 0.20 0.25 -0.03 0.05 0.13 0.21 0.29 図 6 軸ひずみ 20%時のひずみ分布図 ケース CD6(2.0MPa)

粒子追跡法の結果と比べて同じような特徴が出ており、 メンブレンが供試体に追従していることが分かる。

有効拘束圧 0.5MPa のケースにおいてせん断ひずみと 体積膨張ひずみが見られる部分が供試体中央部に存在し、 これはせん断帯と考えられる。有効拘束圧 1.0MPa のケ ースにおいては、0.5MPa のケースよりせん断ひずみが小 さく、ひずみの局所化がより水平状に見られるようにな っている。せん断ひずみと体積圧縮ひずみの両者が確認 できる事から、せん断帯から圧縮帯への遷移状態と見る 事ができる。有効拘束圧 2.0MPa ではせん断ひずみに比 べて卓越した体積圧縮ひずみが水平状に見られ、これは 圧縮帯であると考えられる。

図 7~9 にµフォーカス X 線 CT を用いた供試体内部 及び供試体表面近くの密度分布画像を示す。各断面図の 供試体上での位置は front 面に平行して約 1mm 内部と、 約 20mm 内部の二か所である。CT 値のレジェンドを図 9 の下に示す。赤色の方が高密度の領域を表す。

試験前の CT 画像を見ると局所的な低密度領域が見られる。これは珪藻泥岩試料が自然堆積状態不均質性によるものとれる。図 7(d)には、図 4 に見られるせん断帯と同じ位置に低密度の線がみられた。この様な線は供試体内部(図 7(c))にも見ることができ、供試体内部にまでせん断帯が発生している様子がよく分かる。

図 10 に圧縮帯が見られたケース CD6 の試験後の供試 体写真による画像と、CT スキャン画像を並べて表示した。 体積圧縮ひずみの卓 越した部分と高密度 箇所をそれぞれの図 に黒い実線で囲んだ。 二種類の画像には軸

(d)

(CT值)

200

(c)

圧解放前後

250 300 350 400

という条件 図10 ケース CD6(2.0MPa)試験後圧縮部分の比較 の違いがあるため、影響を受けやすい供試体上下側方の 表面部を除いて見た場合、圧縮部分に対応する高密度部 分がいくつも見られる。この事から、CT スキャン画像 中の高密度領域の偏在には局所的な体積圧縮ひずみが関 わるものと思われる。

6.まとめ

珪藻泥岩を用いた排水三軸圧縮試験を行い、PTV によ る画像解析では異なる有効拘束圧条件下の供試体表面の せん断帯と圧縮帯を観察した。そして有効拘束圧が高く なるに従ってせん断帯から圧縮帯へと遷移する、という 既往の研究結果⁸⁾と一致する特徴がみられた。また X 線 CT スキャンでは珪藻泥岩供試体内部の密度分布に見ら れる特徴を確認し、せん断帯による体積膨張箇所と、圧 縮ひずみに関わる高密度領域を観察した。 (参考文献)

1)Mollema, P.N.and Antonellini, M.A.: Tectonophysics, 267, 209-228, 1996. 2) Wong, T-f., Baud, P.and Klein, E.: Geophys.Res.Lett., 28, (13), 2521-2524, 2001. 3) Castellanza, R.and Nova, R.: Prediction and Simulation Meth ods in Geomechanics, 34, 37-40, 2003. 4) 前川晴義, 宮 北啓:土木学会論文報告集 No.334, pp.135-143, 1983. 5) 北原, 小高, 岡, 太田, 今井: 画像解析による能登珪藻泥岩のせん断帯ならび に圧縮帯の観察, 第 41 回地盤工学研究発表会概要集, 2006. 6) 太田, 小高, 岡, 北原, 今井:, 第 41 回地盤工学研究発表会概要集, 2006.