1. はじめに

科学技術が進歩した近年においても、日本各地では 毎年、500~1500 件程度の土砂災害が発生している。 これらの被害を防ぐためには、斜面崩壊の規模や発生 時刻を正確に予測することが重要となる。堤ら¹⁾は、 2005 年台風 14 号により大分県竹田市で発生した斜面 崩壊に対して数値シミュレーションを行い、崩壊発生 時刻・崩壊形状を精度良く再現している。また、この 時のハイエトグラフを総降雨量一定で引き延ばしたり 縮めたりした時の安全率変化、崩壊形状などの違いに ついて検討している。そこで、本研究では、この研究 をさらに進めて、2005 年台風 14 号以前の豪雨時の斜 面の安定性および降雨パターンの違いによる斜面の安 全率の変化特性の違いについて検討する。

2. 数値シミュレーション方法¹⁾

2.1 降雨浸透解析

降雨浸透に伴う斜面土層内の土壌水分および地下水 位の変動を検討するため、降雨浸透解析を行った。浸 透解析の基礎式は Richards 式であり、有限要素法によ り解いた。

2.2 斜面安定解析

降雨浸透解析から得られた斜面土層内の圧力水頭分 布を入力値として、斜面安定解析を行った。斜面安定 解析法としては、任意のすべり面形状に対応できる簡 易 Janbu 法を採用し、臨界すべり面を動的計画法(DP 法)により決定した。

2.3 解析条件

(1) 降雨浸透解析

斜面を x-z 断面の 2 次元とし、斜面形状は、大分県 砂防課の資料²⁾と現地調査で得られた表面地形と基盤 形状から想定した。また、土層を表層、中層、下層に 分割し、それぞれ実測した水理特性パラメータを与え た。これらを表-1 に示す。ここで、 θ_s は飽和体積含水 率、 θ_r は残留体積含水率、 ψ_m は有効飽和度 S_e =0.5 の

Seitaro OSHIO, Masaharu FUJITA, Daizo TSUTSUMI

立命館大学理工学部	学生員	○大塩	清太郎
京都大学防災研究所	正会員	藤田	正治
京都大学防災研究所	正会員	堤	大三

時の圧力水頭、 σ は孔隙径分布の幅、 K_s は飽和透水 係数である。斜面上端、底面は不透水条件、斜面下端 は大気開放とし土層浸透水が排出される条件とした。 解析開始時の初期水分状態は、堤らと同様に、圧力水 頭分布を斜面形状に線形的に与えた土層に最大降雨強 度 5mm/hr の sin カーブの降雨を1日間与え、その後、 5 日間無降雨状態にした土層に、2005 年 8 月 1 日 0: 00~9 月 4 日 0:00 までの実測降雨値を与えた。

表-1 土壌の水理特性パラメータ

	Surface	Middle	Lower
$\theta_s [m^3/m^3]$	0.646	0.595	0.682
$\theta_r [m^3/m^3]$	0.477	0.441	0.577
ψ_m [cm]	-792	-595	-797
$\sigma[-]$	0.875	1.36	1.02
K_s [cm/s]	2.42×10^{-2}	3.32×10^{-3}	5.69×10 ⁻⁴

(2) 斜面安定解析

土層の強度を表すパラメータである内部摩擦角 ϕ と 粘着力cは、 ϕ =0.30rad(17°)、c=1.96×10⁴N/m²(2.0×10³kgf/m²)とした。

3. 2005年台風 14 号以前の豪雨時の斜面の安定性

2005 年台風 14 号以前の豪雨時の斜面の安定性を検 討するため、2005 年台風 14 号以前の規模の大きい降 雨を与え解析を行った。ここで、規模の大きい降雨と して、既往最大の時間雨量、日降雨量、総降雨量を用 いた。図-1から図-3 に、これらの降雨を与えた時の安 全率変化を示す。これらより、2005 年台風 14 号以前 の規模の大きい降雨では、崩壊が発生していない。こ のことから、2005 年台風 14 号以前の豪雨時には斜面

図-3 既往最大の総降雨量での安全率変化 の安定性が保たれ、2005 年台風 14 号により崩壊が発 生するという実際の現象に一致することが分かる。

4. 降雨パターンと安全率の関係性

降雨パターンと安全率の関係性を検討するため、典型的な降雨パターンに該当する実測降雨の総降雨量を 既往最大である 2005 年台風 14 号の際の総降雨量にフィッティングさせた降雨パターンを用いて解析を行っ た。ここで、典型的な降雨パターンは降雨ピークが降 雨の前半・中盤・後半にあるもの、および降雨ピーク がないものに分類される。しかし、降雨ピークが降雨 の前半にあるものは比較的少ないため、ここでは、そ れ以外の降雨パターンについて解析を行った。図-4 は、 それぞれ典型的な降雨パターンを表したものであり、

(a) は降雨ピークが降雨の中盤にあるもの、(b) は降 雨ピークが降雨の後半にあるもの、(c) は降雨ピーク がないものである。また、それぞれ実測降雨パターン を Case1、総降雨量をフィッティングした降雨パター ンを Case2 とし、Case2 を用いた時の安全率変化を破線 で示している。図-4 より、降雨ピークがある (a)、(b) では、降雨ピーク付近で安全率が急激に低下すること が分かる。また、安全率の低下の度合いは降雨強度に 大きく影響されることが分かる。一方、降雨ピークが ない (c) では、安全率が緩やかに低下し続ける。ここ で、崩壊が発生しているのは、Case2 (b) のみであり、 図-5 に示す 2005 年台風 14 号の際の降雨パターンも同 様の特徴をもつ。このことから、総降雨量が一定の場 合、降雨ピークが降雨の後半にある降雨パターンで崩 壊が発生しやすいことが分かる。この理由は、降雨ピ ークを迎えるまでの積算降雨量が増加し、それによっ て安全率がある程度低下した状態で安全率が急激に低 下する降雨ピークを迎えるためであると考えられる。

5. おわりに

本研究では、降雨パターンと安全率の関係性につい て、いくつか重要な知見が得られたが、数値シミュレ ーションに関して、x-z 断面の2次元解析であること、 すべり面の3次元形状が再現されていないことなどの 問題がある。そのため、今後、これらの点を改善し、 定量的な評価を行っていく必要がある。

参考文献

 1) 堤大三・藤田正治・林雄二郎:2005年台風14号により大分県竹田市で発生した斜面崩壊に関する数値シ ミュレーション、水工学論文集、第51巻、pp.931-936、 2007.

2) 大分県砂防課: H17 発生災害関係資料、2005.