第 部門

大阪市立大学大学院工学研究科	学生会員	馬込	大地
大阪市立大学大学院工学研究科	正会員	重松	孝昌
東洋建設株式会社鳴尾研究所	正会員	藤原	隆一

1. 背景と目的

2004年以後,毎年8月に実施されている大阪湾一 斉水質調査の結果によれば,湾奥部の底層貧酸素化 は広範囲に及び,夏季には港湾海域のほぼ全域が貧 酸素化していると言っても過言ではない状況にある ことが明らかである.特に,2004年8月2日の調査 は,台風の影響を強く受けた直後の観測結果である にもかかわらず,貧酸素化は解消されておらず,港 湾海域の環境改善が重要かつ困難な課題であること を示唆している.この一因として,港湾海域の著し く高い閉鎖性が挙げられる.閉鎖性が高いために流 動がほとんどなく,その結果,港湾海域は成層化し て鉛直混合が抑制され,底層への酸素供給量が少な くなるとともに,活発な底質の酸素消費のために, 貧酸素化が進行しやすい環境構造になっている.

本研究では,ポンプを用いて港湾海域の表層水を 底層へと供給することによって海域の流動および鉛 直混合を促進し,これによって貧酸素化の発生を抑 制することを目的として,現地実験を行った.

<u>2.現地調査の概要</u>

調査は,尼崎西宮芦屋港鳴尾港(図-1)において, 2007年9月14日(12時30分~19時00分)に行なった。鳴尾港の南東隅角部にポンプを設置し,表層水

図-1 調査地点

図-2 現地概念図

を水底直上から,南西岸壁沿いに北西方向へと水平 に放流した.取水口は水底上約 4.0m に位置し,取 水・放水パイプの内径は 0.2m,送水量は約 1.3× 10⁻³m³/s であった.

計測は,南西岸壁沿いに 10m 間隔で行った.溶存 酸素は,DO計(YSI 社製 model-58)を用いて水面から 0.5m 間隔で,水温・塩分は Compact-CTD(アレック 電子製)を用いて 0.1m 間隔で,それぞれ鉛直分布を 計測した.ポンプは,13時45分~17時00分の期間 だけ稼働させ,ポンプ稼働中,および,その前後に 計測を行った.このとき,底層の流速は二次元電磁 流速計(アレック電子製)を用いて計測した.

なお,ポンプによる底層放流の影響がないであろうと推測した,ポンプ設置位置より南東護岸沿いに50m離れた地点Oでも,同項目の計測を行った.

<u>3.測定結果</u>

表 1 は,各地点におけるポンプ稼働期間中の底層 流速を示したものである.ポンプ稼働期間中は,放 出口では平均 0.47m/s の流速が計測された.D 地点 では,ポンプ稼働前には 0.006m/s であったが,ポン プ稼動後は平均流速が 0.12m/s であった.このとき, B 地点,C 地点における底層流速は,D 地点より放

Daichi MAGOME, Takaaki SHIGEMATSU and Ryuichi FUJIWARA

表-1 各地点における底層流速

地点	А	В	С	D	F
流速(m/s)	0.47	0.02	0.06	0.12	0.06

流口に近いにもかかわらず,0.02m/s および 0.06m/s とD地点よりも平均流速が遅かった.この理由とし て,B,C 地点では海底形状が窪んでいるため,ポ ンプからの放出水は,水底直上ではなくやや上方を 沖側へと流れたのではないかと考えられる.D地点 よりもさらに 20m 沖側のF地点においても,0.06m/s 程度の平均流速が計測されており,放流方向には 50m 離れていても放流口における流速の約 10%程 度の流速が観測されたことになる.

図-3~図-5 は,各地点における水温・塩分・密度 の分布を示したものである.ポンプ稼動前の測定結 果を見れば,水深 0.5m および 3.8m 付近に水温躍層 が,また,水深 0.5m および 3.0m 付近に塩分躍層が 形成されており,その結果として明瞭な密度躍層が 形成されていることがわかる.ポンプ稼働中の測定 結果を見るといずれの地点も時間の経過とともに, 水温や塩分の躍層が崩壊し,それらの鉛直分布は均 一化していくことがわかる.ポンプ停止後の水温の 鉛直分布を見れば,水深 4.5m 以浅はおおよそ均一 な温度場であるが,それ以深では水温が低くなって いる.また,塩分の鉛直分布を見れば,表層では塩 分の低下が,また,およそ 4.5m 以深では塩分の上 昇が見られる.以上のことから,本実験による表層 水の底層への供給システムを稼働すれば,密度躍層 を破壊することは可能であるが,システムを停止す れば密度成層が発達し始めることがわかった.

図-6 は,各地点における DO の分布を示したもの である.ポンプ稼動前は,地点 B,D,Fにおいて, 水深 2.0m 以深では DO は約 2mg/l を示し,水底はほ ぼ無酸素状態であった.ポンプを稼動すると,いず れの地点においても DO は回復する傾向を示すこと がわかる.ただし,表層では光合成によって酸素が 生産されているため,この酸素生産の影響とポンプ 稼働による影響を分離して評価することは難しい. ポンプ停止後は,水深 5.0m 以深で1~3mg/lとなり, 再び貧酸素化に向かう傾向が見られた.

<u>4.まとめ</u>

本研究によれば,表層水を底層へ輸送して水底上 を水平に放水すれば,本実験条件の下では送水方向 に約 100m までは,密度成層を崩壊させることが可 能ではないかと考えられた.なお,地点 O は底層放 水による環境影響がないであろうと推定していたが, 測定結果によれば,その影響を受けていると考えら れる.すなわち,底層放水による環境への影響は, 放水方向だけでなく,本実験条件の場合には,少な くとも 50m は垂直方向にも及ぶと考えられた.

