第V部門

非破壊試験結果を活用した鉄筋コンクリート部材の力学性能の予測手法に関する基礎研究

大阪大学工学部	学生員	○峯澤	博行,	大阪大学大学院工学研究科	正会員	鎌田	敏郎
金沢工業大学環境土木工学科	正会員	宮里	心一,	防衛大学校建設環境工学科	正会員	黒田	一郎
大阪大学大学院工学研究科	正会員	大西	弘志,	大阪大学大学院工学研究科	学生員	内田	慎哉

1. はじめに

近年、我が国において塩害による既設構造物の劣化が問題視 されている. このような構造物における現状の維持管理では、 目視調査や各種非破壊検査などを実施することにより、鉄筋の 腐食やはく離の程度を定性的に把握しているにすぎない. した がって、合理的な維持管理を行う上では、鉄筋の腐食状況など の情報に加えて、構造物の力学性能を適切に把握することが好 ましいと考えられる.

そこで本研究では、電食試験により人工的に鉄筋を腐食させ た RC 梁供試体を対象として各種非破壊試験を行い、その結果 を劣化損傷度マップとして描いた後、これをインプットした FEM により部材の力学性能を評価するための手法について検 討した. 本手法の妥当性を検証するため, 作製した供試体に対 して載荷試験を行い、この結果と FEM の結果とを比較した. 本研究のフローを図-1に示す.

2. RC 梁供試体および電食試験概要

供試体概要を図-2に示す. コンクリート強度は 40.5N/mm²

であった. 電食試験を行うにあたり、供試体は水槽底版部に金 属網を敷いた上に設置した. 続いて、腐食を促進させるため、 水槽内部に3%食塩水を満たし、鉄筋を陽極、金属網を陰極と した回路を形成させた上で、1Aの直流定電流を通電させた. 通電期間は、14 および28 日間の2 パターンとした. なお、解 析および載荷試験において力学性能を比較するため、健全供試 体も併せて作製した.本研究で用いた供試体は以上3種類であ る.

3. 非破壊試験の実施と劣化損傷度マップの作成

3. 1 非破壊試験

電食試験前後において、自然電位法により鉄筋の腐食の可能 性を評価するとともに、分極抵抗法を用いて腐食に伴う鉄筋の 断面欠損量を算出した. これらの試験は鉄筋の直上を 100mm 間隔で実施した. さらに鉄筋とコンクリートとの付着状況を把 握するため、超音波伝播速度の計測を実施した.速度の計測位 置を図-3に示す.また、電食試験終了後は、目視によるひび 割れ観察を行った.

Hiroyuki MINEZAWA, Toshiro KAMADA, Ichiro KURODA, Shinichi MIYAZATO, Hiroshi ONISHI, Shinya UCHIDA

3. 2 損傷度マップ

図-4に電食試験後の自然電位法による損傷度マップを示す. 図より通電期間によらず鉄筋が腐食していると考えられる.図 -5に電食前後の超音波伝播速度の比を示す.この図において, 速度比が 0.79 より小さくなっているものを鉄筋とコンクリー ト間で付着が切れていると便宜上定義した.続いて,図-6に 分極抵抗の計測値から推定した断面欠損程度のマップを示す. 通電期間が長くなることにより,腐食に伴う鉄筋の断面欠損量 がより大きくなっていることが伺える.

4.曲げ載荷試験および損傷度マップを用いた FEM

4.1 載荷概要

図-2に示される載荷点に荷重を与え、4 点曲げにより曲げ 載荷試験を実施した.載荷点および支点においてたわみを計測 した.

4.2 解析概要

図-7に解析モデルを示す.解析は平面応力状態を仮定した 2 次元解析とした.また,解析にインプットするデータとして は,鉄筋-コンクリート間の付着状況(図-5)および鉄筋の 断面欠損量(図-6)をそれぞれ用いた.

4.3 結果と考察

図-8に実験および解析で測定されたひび割れ発生状況を示 す.また、実験および解析により得られた荷重-変位曲線を図 -9および図-10にそれぞれ示す.

図-8に示す載荷によって発生したひび割れの状況から,健 全供試体では圧縮縁近傍でひび割れが斜めに傾いているものの, 最終的には上面が圧壊する典型的な曲げ破壊を呈したと考察で きる.また,電食14日では,曲げ破壊が進行した後,終局状 態では電食試験により発生した側面の腐食ひび割れに沿ってひ び割れが急激に進展し,定着せん断破壊へと移行していること がわかる.一方,電食28日における供試体では,曲げひび割 れが進展する途中で脆性的な定着破壊が生じた.

図-9に示す荷重-変位曲線から、電食により最大荷重が健 全のそれよりも低下していることがわかる. 図-6に示すとお り、鉄筋の腐食減量は電食 14 日で最大 5%程度,電食 28 日で 最大 10%程度と推定されていたことを考慮すると、最大荷重の 低下率は電食 14 日についてはほぼ想定通りであったが、電食 28 日では予想を上回り大きく低下している. これは曲げひび 割れの発生本数から推測される鉄筋-コンクリート間の付着力 の低下や、側面に発生した水平ひび割れにより、破壊のモード が大きく変化したものと思われる.

図-8に示す解析によって推定されたひび割れ発生状況を載 荷によるひび割れ発生状況と比較すると、健全供試体について は良く一致していた.しかし、電食 14 日では、鉄筋のすべり が発生しせん断ひび割れが進展する点までは良く対応している ものの,最終的な破壊モードの変化までは再現できていない. また,電食 28 日は定着部において完全に鉄筋がすべり脆性的 な破壊を呈したが,図-9および図-10の荷重-変位曲線を 比較すると,最終的な耐力に大きな差があることがわかる.こ れは,今回採用した鉄筋-コンクリート間の付着切れの判断基 準(超音波伝播速度比:0.79以下)が,実際の付着程度と異な っていたためと考えられる.

5. まとめ

本研究では、非破壊試験を実施することにより供試体の腐食 状況に応じた損傷度マップを作成した.この損傷度マップを FEM のモデルに反映し、力学性能をおおよそ評価できること が明らかとなった.しかしながら、耐荷力の相違や破壊モード の変化については課題を残した.今後は超音波伝播速度と付着 強度との関係や、腐食ひび割れを解析に反映することにより、 現有力学性能を評価する手法についてさらに詳細に検討を行う 予定である.

謝辞

本研究は、日本学術振興会科学研究費補助金(基礎研究 (B) 18360207)の援助を受けて行ったものである.ここに記して謝 意を表する.

