第Ⅲ部門

V

関西大学工学部	学生員(0	藤	村昭	仁
京都大学大学院	学生員		大	槻	敏
関西大学工学部	フェロー	;	楠	見晴	重

1. はじめに

我が国の岩盤斜面は、厳しい自然条件のもとで、常に不安 定になる要素を有している。平成7年北海道豊浜トンネル坑 口岩盤斜面崩壊、平成9年国道229号第2白糸トンネル崩壊と 相次ぐ事故が発生している。また、平成19年1月30日早朝に 奈良県上北村国道169号線で道路脇の斜面が崩壊し3名の死 者がでる痛ましい事故も起こっている。これらの崩壊現象よ り岩盤斜面問題に社会の関心が集まり、社会生活の安全確保 の施策として岩盤崩落問題への取組み、解決が危急の問題と なっている。

一方、岩盤は一般的に複雑な地質構造が伴うため、断層、 節理、層理など様々な不連続面の変形・強度特性に大きく支 配される。従って、岩盤崩落現象は、発生予知や規模、その 影響範囲の評価が一般的に困難である。

本研究ではボンディング理論を導入した個別要素法を用い て岩盤崩壊の崩壊シミュレーションを行い崩壊挙動を再現し ている。

2. 斜面の概要

本研究では、新潟県柿崎川ダム原石山のり面における斜面崩 壊を取り上げた。当斜面は平成11年5月14日、高さ75m、幅45 m、体積10,000m³~15,000m³の規模で崩壊した。ダム形式はロ ックフィルダムで地山を構成する地層は安山岩である。

斜面内には流れ盤構造の開口亀裂が伏在し、すべり崩壊によ り崩壊したことがわかる。また、直前の降雨や地震などの観測 記録がないことから自重解析が可能となる。

3. 個別要素法 (Distinct Element Method:DEM)

個別要素法とは、数値シミュレーション対象の構造体を粒子 形状の要素からなる集合体でモデル化し、粒子毎に運動方程式 をたてる。また粒子間作用力は、フックの法則を適用して、作 用反作用の法則から求めている。そして粒子毎の運動方程式を 差分近似し、時間領域で前進的に解くことにより粒子の力学的 挙動の追跡を可能としている。さらに、これらの粒子を巨視的 に観察することにより、集合体としての動的挙動を把握するこ とが可能になる。図2は重なり合った粒子を示したもので、運動 方程式は式(1)により求まる(Cは減衰係数)。

$\mathbf{m} \cdot \ddot{u} + \mathbf{C} \dot{u} + \mathbf{F} = 0$	(1)				
また、粒子間の作用力は式(2)から求める	(kはば				
ね定数、⊿nはオーバーラップ)。					
$\mathbf{E} = \mathbf{E} = \mathbf{I} \cdot \mathbf{A} \mathbf{r}$	(2)				

4. ボンディング理論

岩盤のような固体に対して粒状体のモデルを適用する場合、粒子間に作用する力は反発力のみではない。本研究ではボンディング力を導入することにより、引張力を表現している。図2に示すようにボンディング半径 r_{b1}とボンディング半径r_{b2}の2種類のボンディング半径を定義する。図3よりr_{b1}は引張力が降伏に至る距離、r_{b2} はボンディングが破断する距離を示している。このように定義された反発力およびボンディング力は、次のように定式化できる。

Akihito FUJIMURA, Satoshi OHTSUKI, Harushige KUSUMI

図1 重なり合った粒子の関係

図2 ボンディングカ作用領域

5. 解析モデルの作成

解析モデルの作成にあたり、地質調査から明らかな断面 図から標高データを抽出した。ここで抽出した標高データ を用いて3次元解析モデルを作成する。そして図5がパッ キングした粒子積層体を斜面形状に切り取った解析モデ ルである。

6.2種類の物性値を用いる解析モデル作成

図6に示すように崩壊岩塊部および抵抗面を青色粒子 によりモデル化する。ここでいう抵抗面とは崩壊岩塊面 と斜面基礎部との境界面のことである。そして、崩壊岩 地部および抵抗面と斜面基礎部に異なるボンディング半 径を与える。さらに青色粒子のボンディング半径を斜面 基礎部より小さく設定するので、引張強度を低下させる ことが可能となる。これにより、引張強度の小さい弱部 を表現できる。

7. パラメータ検討

図7に示す平面図から崩壊堆積物の到達距離を読み取 り、また解析時の粒子の到達距離を算出し、比較する。 崩壊岩塊部ボンディング半径を変化させた 4 種類のパ ラメータで崩壊解析を実施し、実現象と近い値が得られ た時のパラメータを最適としその時の崩壊挙動を見る。 **図8**に結果を示す。

8. 解析結果

図9に前述のようにパラメータを用いて崩壊解析を 行なった際の崩壊挙動および変位分布図を解析開始か ら 250,000step(2.5 秒間) まで示している。時間が経過 するにつれて崩壊岩塊部の表面から崩壊していき斜面 のり尻部に堆積していくことがわかる。

9. まとめ

ボンディング理論を導入した個別要素法を用い、崩壊挙動を把握した。また崩壊岩塊部を解析モデルに反映 し到達距離を比較することによってパラメータの検討を行なった結果、より実現象に近い崩壊挙動を再現する ことが可能となった。

【参考文献】

1) 岩盤斜面の考え方 - 現状と将来展望 - [実務者の手引き], 土木学会, 2004.

 $[K \cdot \Delta n]$ (D < r(i)) $\mathbf{K} \cdot (\mathbf{D} - \mathbf{r}(\mathbf{i})) \quad (r(\mathbf{i}) < \mathbf{D} \leq \mathbf{r}_{h1})$ (3) $F_{ii} =$ K •(\mathbf{r}_{b2} - D) ($\mathbf{r}_{b1} < \mathbf{D} \leq \mathbf{r}_{b2}$) $(D > r_{h_2})$ 0

図4 粒子間作用力

図5 解析モデル

(b) 50,000step

図 9 変位分布図