第Ⅲ部門

遮水シートを考慮した河川堤防の浸透-変形連成解析

京都大学大学院	学生会員	○森中雄一
京都大学大学院	フェロー会員	岡二三生
京都大学大学院	正会員	木元小百合
日建設計シビル株	正会員	加藤亮輔
中日本高速道路㈱(元 京都大学大学院)	正会員	田中智太郎
京都大学大学院	学生会員	山崎真也
ウカルである		

1.研究背景と目的

応力比である。

近年、計画高水位を超える集中豪雨や洪水が多発 しており、水位上昇による浸透破壊の他、水位低下 による堤防の表法面の崩壊などの事例が報告され ている。本研究では LIQCA2D-04¹⁾をベースに不飽 和浸透を考慮できるよう拡張した LIQCA2D-SF²⁾ を用いて 河川堤防の浸透-変形連成解析を行い、 遮水シートを考慮した場合の河川堤防の安全性に ついて検討した。

2.混合体の密度と応力

本研究における混合体の密度と応力を次式に示す。

 $\rho = \bar{\rho}^{s} + \bar{\rho}^{f} + \bar{\rho}^{a} \quad (1) \quad \bar{\rho}^{s} = (1 - n)\rho^{s} \quad (2) \\
 \bar{\rho}^{f} = nSr\rho^{f} \quad (3) \quad \bar{\rho}^{a} = n(1 - Sr)\rho^{a} \quad (4) \\
 ここで\rho は三相混合体全体の密度、<math>\rho^{s}, \rho^{f}, \rho^{a}$ はそ れぞれ固相、液相、気相の構成物質の密度である。 また、 S_{r} は飽和度、nは間隙率である。 固相: $\sigma_{ij}^{s} = \sigma_{ij}^{r} - (1 - n)Srp^{f}\delta_{ij} - (1 - n)(1 - Sr)p^{a}\delta_{ij} \quad (5) \\
 液相: \sigma_{ij}^{f} = -nSrp^{f}\delta_{ij} \quad (6) \\
 気相: \sigma_{ii}^{a} = -n(1 - Sr)p^{a}\delta_{ii} \quad (7)$

$$\sigma_{ii} = \sigma_{ii}^s + \sigma_{ii}^f + \sigma_{ii}^a \tag{8}$$

$$\sigma_{ij} = \sigma_{ij}^{\sigma} - (Srp^{f}\delta_{ij} + (1 - Sr)p^{a}\delta_{ij})$$
(9)

ここで σ_{ij}^{i} は骨格応力テンソル、 σ_{ij} は全応力テンソ ルであり、 σ_{ij}^{s} 、 σ_{ij}^{f} 、 σ_{ij}^{a} はそれぞれ固相、液相、 気相の分応力テンソルである。

3.砂の弾塑性構成式

岡³⁾らは以下で示すような過圧密境界面及び降 伏関数、塑性ポテンシャル関数及び構成式を用いて 砂の弾塑性構成式を表現した。

過圧密境界面:
$$f_b = \overline{\eta}_0^* + M_m^* \ln \frac{\sigma_m}{\sigma_{mb}} = 0$$
 (10)

降伏関数: $f = \{ (\eta_{ij}^* - \chi_{ij}^*) (\eta_{ij}^* - \chi_{ij}^*) \}^{\frac{1}{2}} - k = 0$ (11)

4.支配方程式

支配方程式として、連続式と運動方程式を空間離 散化、時間離散化した式を用いている。以下に連続 式と運動方程式を示す。なお、本研究では間隙空気 圧 =0 kPa とした三相系簡易法を用いて解析を 行った。

連続式:
$$-\frac{\partial}{\partial x_i} \left\{ \frac{k}{\gamma_w} \left(\rho^f \ddot{u}_i^s + \frac{\partial p}{\partial x_i} - \rho^f b_i \right) \right\} + S_r \dot{\varepsilon}_{ii}^s + \frac{n}{\overline{K}^f} \dot{p} = 0$$
 (14)

運動方程式: $\rho \ddot{u}_i^s = \frac{\partial \sigma_{ji}}{\partial x_j} + \rho b_i$ (15) ここで、 b_i は物体力として重力加速度、 \ddot{u}_i^s は固相 の加速度である。空間離散化には有限要素法及び差 分法を、時間離散化には Newmark の β 法を用いて いる。

5.不飽和特性

不飽和特性のとして、水分特性曲線 van Genuchten 式⁴⁾を用いて与えている。

 $S_{e} = (1 + (\alpha \psi)^{n})^{-m}$ ここで、 S_{e} は有効飽和度 ψ はサクションである。

また、*α,m,n*は形状パラメータである。

6.解析モデル

本研究で用いた河川堤防のモデルを図1に示す。

初期状態では水位は基礎地盤上端にある。この水位 を以後、初期水位と呼ぶ。そこから 1/3 m/s で 18 時間かけて水位を天端まで上昇させ、約 34 時間天

Yuichi Morinaka, Fusao Oka, Sayuri Kimoto, Ryosuke Kato, Tomotaro Tanaka and Shinya Yamazaki

端で水位を保つ。その後、同じ速度 1/3 m/s で水位 を初期水位まで下げる。解析は210時間まで行った。 case1は、遮水シートの挿入を考慮していないケー ス、case2では遮水シートの挿入を考慮し、2つの ケースの比較を行った。解析に用いた材料定数 1) を表1に示す。遮水シートの透水係数は 1.0× 10⁻⁹m/s とし⁵⁾、川表法面と平行に基礎地盤上端ま で被服土 0.4mとして挿入した。堤体の初期飽和度 は60%とした。図2に水分特性曲線を示す。

ポアソン比 ν	0.40	
内 部 摩 擦 角 Φ '(deg)	30	
パラメータ		
初 期 間 隙 比 e 。	0.856	
圧縮指数 λ	0.018	
膨潤指数 κ	0.0055	
初 期 せ ん 断 係 数 比 G ₀/ σ ' _{m o}	873	
透水係数 k(m/s)	1.0×10^{-5}	
重力加速度 g(m / s ²)	9.8	
破 壊 応 力 比 M _f *	1.122	
変相応力比 M _m *	0.909	
硬 化 関 数 中 の パ ラメー タ B₀*	2200	
硬 化 関 数 中 の パ ラメータ B ₁ *	30	
硬 化 関 数 中 の パ ラメー タ C _f	0	
水の体積弾性係数 K _f (kPa)	2.0 × 10 ⁵	
擬似過圧密比 OCR [*]	1.0	
異 方 性 消 失 の パ ラメータ C 。	2000	
ダイレイタンシー 係 数 0。	5.0	
ダイレイタンシー 係 数 n	1.5	
湿潤密度 ρ (g/cm ³)	1.911	
van Genuchten式のα	2.0	
van Genuchten式のn	4.0	

サキャパラマーク

図 2 水分特性曲線

7.解析結果

case1 及び case2 の水位低下直前及び水位低下完 了時の飽和度分布図を図3及び図4に示す。

図3より case1 では水位上昇に伴い浸潤面の上昇 が見られる。case2 では遮水シートの影響により、

図4より、case1 では浸潤面の低下が見られるが case2 では遮水シートが挿入されているため、水が 抜けにくいことが観察された。

図5に210時間後における偏差ひずみ分布図を示す。 図5より case1 では川表法面、川表及び川裏法尻付近 にひずみが発達した。case1 では川裏法尻に発達した ひずみがみられたが、case2 では川裏法尻部のひずみ の発生は抑えれたが、川表側のひずみは増加した。

8.結論と今後の課題

浸透変形連成解析法を用いて遮水シートを挿入し ない場合及び挿入した場合について比較した。遮水 シートを挿入していない場合では川裏法尻付近に ひずみが発達したのに対し、遮水シートを挿入した 場合では川表にひずみが発達した。川裏には小さな ひずみの発生しか見られなかった。今後は水分特性 曲線のヒステリシスや、遮水シートのモデル化につ いて検討を行う予定である。

参考文献

1) 液状化解析手法LIQCA開発グループ:LIQCA2D04(2004公開版) 資料,2004.2)加藤亮輔:浸水による砂質土堤防の有限要素解析,京 都大学大学院修士論文,2005. 3) Oka, F.,Yashi ma, A., Tateishi, A, Taguchi, Y., and Yamashita, S.: A cyclic elasto-plastic constitutive model for sand considering a plastic-strain dependence of the shear modulus, Geotechnique, Vol49, No.5, pp.661-680, 1999. 4)van Genuchten, M.T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Science, Society of America Journal, pp.892-898, 1980.5) 財団法人国土技術研究センター:河川堤 防の構造検討の手引き,2002