第 I 部門

実構造物が受ける載荷パターンを考慮したスタッドの静的強度特性

摂南大学 工学部	学生員	〇山川	糧平
摂南大学 工学部		伊藤	秀栄
日本スタッドウェルディング(株)	正会員	重田	尚孝
摂南大学 工学部	正会員	平城	弘一

1. まえがき 近年、土木構造物の建設において、コスト縮 減を目指して材料的・構造形式的に合理化が図られ、鋼とコン クリートの合成・複合構造物が採用されることが多くなってい る. そこで、合成・複合構造の性能を確保するため、鋼とコン クリートを一体化させるのに必要な「ずれ止め構造」の要求性能 が高まっている.新しい構造形式にずれ止めが適用された場合, 従来の研究で得られた強度特性などの成果をそのまま適用する には、設計上 支障をきたす、と予想できる. 例えば、連続合成 桁の中間支点部の床版コンクリートは常に引張域となり、また 支間中央部や桁端部の床版コンクリートでは載荷状態によって 圧縮域または引張域となる. それに対してずれ止めは、連続合 成桁の中間支点部付近で完全両振り,支間中央部で部分両振り, 桁端では完全片振りの繰返し水平せん断力を受ける、と考えら れる. そこで本研究では、ずれ止めとして全円周方向の水平せ ん断力に対して機能を発揮することができる「頭付きスタッド (以下,スタッドと略記する)」を研究対象として,実構造物の 床版コンクリートが受ける載荷パターン(引張領域・圧縮領域) に対応でき、同時に、スタッドへの載荷パターン(完全片振り・ 部分両振り・完全両振り)の水平せん断力を作用させることがで きる試験を実施することにした.本文は静的試験から得られた 結果を述べるものである.

<u>実験の概要</u>新提案の試験方法に使用する試験体を図1
に示す.試験体の形状は,長さ300mmのH形鋼のウエブ中央を長さ方向に切断してCT形断面とし,そのフランジ表面に1本(下部の載荷側),または4本(上部の固定側)のスタッド(\$13
×75)をそれぞれ溶植する.それらのスタッドは1つのコンク

リートブロック内に埋め込まれている. 試験対象とする下部CT形鋼のフランジに上下の力を作用させて, コンクリートブロックに引張または圧縮域の応力状態を再現し,同時にスタッドへは正・負または両振りの せん断力を作用させることができる.また,試験体が回転するのを防止するために,上部CT形鋼のウエブ と下部CT形鋼のウエブは2枚の帯板で挟まれ,上部CT形鋼のウエブのみボルトで締結されている.表1 に試験体の種類を示す.試験体数は全部で12体,試験パラメータは載荷パターンと載荷方法である.なお, 引張域での部分両振りの載荷試験(STP)では,最小荷重(圧縮方向)で5kNを一定に保持して,最大荷重を漸 増繰返し載荷で行った.使用コンクリートの圧縮強度は60.5N/mm²,ヤング係数は36.6×10³N/mm²であった.

Ryouhei YAMAKAWA, Shue ITOU, Naotaka SHIGETA and Hirokazu HIRAGI

図1 試験体の概要

表1 試験体の種類

試験体名	載荷パターン	載荷方法
STA-1		用语言
STA-2	引張域での引張載荷	平
STA-3		漸増繰返し
STP-1	리碑城での	
STP-2	部分両振り載荷	漸増繰返し
STP-3		
STC-1	리連,圧縮域での	
STC-2	完全両振り載荷	漸増繰返し
STC-3	九王间派为我问	
SCA-1		単調博加
SCA-2	圧縮域での圧縮載荷	平
SCA-3		漸増繰返し

3. 試験結果および考察 表2に静的試験結果の一 覧を示す.最大せん断耐力(Qmax)は,完全両振りの試 験体(STC)を除いて、ほぼ 60kN 程度であった.この値 はスタッド材の引張強度の平均値(≒59.7kN)に近いも のであった. つまり, スタッドが水平せん断力を受け て軸部破断を起こす場合、また軸部破壊を起こす直前 の場合、スタッドのせん断耐力は、スタッド材の引張 強度の平均値に等価である、と言える.ただし、STC の試験体のように、スタッドが完全両振りの載荷を受 けた場合、最大せん断耐力はスタッド材の引張強度の 平均値に対して、約1割程度低下することがわかる. 一方, ずれ定数(K)は引張域での載荷試験(STA と STP) では、ほぼ同じで≒180kN/mm であった. 完全両振りの 試験(STC)では最も高く≒325kN/mm(上記の約1.81倍) であった. それに対して, 圧縮域での載荷試験(SCA) は≒316kN/mm(上記の約1.75倍)であった.

図2~図4に各試験体の作用せん断力と相対ずれの 関係を示す.同図には、コンクリート強度が23.1N/mm² の結果も、直接比較のために併記してある.これらの 図より明らかなように、ずれ性状はコンクリート強度 に大きく影響を受けることがわかる.

写真1は破壊時におけるコンクリートブロックの破壊状況を示す.この写真より明らかなように,引張域での載荷試験では,コンクリートブロックにおいて「上・下スタッド間の加力直角方向のひび割れ」と「スタッド近辺の放射状のひび割れ」の2種類のひび割れが発生していることがわかる.一方,圧縮域での載荷試験では,コンクリートブロックには何らひび割れが発生することなく,スタッドが軸部破壊していることもわかる.ただし,スタッドの支圧面に相当するコンクリート部には引張・圧縮域とも局部破壊を示していた.

a) 引張域引張載荷 写真1 コンク!

載荷 b)圧縮域圧縮載荷 コンクリートの破壊状況

表2 試験結果一覧

試験体名	最大せん断耐力 ^{*1} Qmax (kN/本)	ずれ定数 ^{*2} K (kN/mm)	破壊形式
STA-1	58.98	195	スタッド軸部破壊
STA-2	59.18	204	コンクリートの斜めせん断破壊
STA-3	59.34	139	スタッド軸部破壊
STA平均	59.17	-	-
STP-1	60.09	144	フタッド動名なた
STP-2	58.13	217	ヘラット軸部破壊
STP-3	63.50	185	コンクリートの斜めせん断破壊
STP平均	60.58	-	-
STC-1	55.82	-	スタッド軸部破壊(引張側)
STC-2	54.21	319•318 ^{*3}	スタッド軸部破壊(圧縮側)
STC-3	52.60	346•317	スタッド軸部破壊(引張側)
STC平均	54.21	-	-
SCA-1	58.60	297	
SCA-2	64.42	399	スタッド軸部破壊
SCA-3	65.58	253	
SCA平均	62.87	-	-

*1:最大せん断耐力=作用せん断力のピーク値

*2:ずれ定数=Qmax/3の割線剛性 *3:(引張側・圧縮側) Tu = f_{su}・A_s = 53.07~66.33 kN

(fsu = 400~500 N/mm², $A_s = \pi d_s^2/4$, $d_s = 13$ mm)

図3 作用せん断力と相対ずれの関係 {(部分・完全) 両振り載荷}

