第V部門

京都大学 学生会員〇高谷 哲 JR 西日本 正会員 荒木 弘祐 京都大学 正会員 山本 貴士 正会員 服部 篤史 フェロー 宮川 豊章

1 研究目的

筆者らは既報で¹⁾で、コンクリート中に設置した円 柱空洞内壁に弾性体を通じて内圧を加える実験を行い、 この手法が鉄筋腐食膨張圧のモデル化として妥当性が あることを示している.また、同実験からひび割れ進 展エネルギーをUs、コンクリート破壊エネルギーを G_F 、 ひび割れ面積をAとして、 $U_S=G_F \cdot A$ の関係が成り立つ こと²⁾を示している.本研究では、実構造物に近い構 造に改良した供試体を用いて、既報¹⁾の手法に準じ剥 離ひび割れ破壊エネルギーの算定を目的として載荷実 験を行った.

2 実験概要

実験は既報²⁾の手法に沿って行った.作成した供試 体は図-1に示すような 400mm×150mm×400mmの 角柱供試体で,D19 鉄筋をctc150mmで格子状に配筋し, 中央かぶり側の鉄筋位置に ϕ 20×400mmの円柱空洞 を設置した.弾性体は,位置決め治具を用いて供試体 中央に配置した.かぶり (C)は10,20,および30mm の3種類とし,内部に挿入する弾性体長さ(内圧導入 長さ:L)は50,100,150および200mmの4種類とし た.供試体はかぶりおよび弾性体それぞれの組み合わ せを4体づつ作成し,合計48体作成した.載荷は既報 ²⁾と同様に行った.ただし,実験は荷重が 0.5kNまで 低下した時点で終了とした.

3 エネルギー算出方法

得られた鉛直変位(dL)および鉛直荷重(P)は,既報¹⁾ の手法により半径変化量(dr)および内圧(pi)に変 換した.さらに,得られたdrとpiの関係から,既報²⁾の 手法を用いてひび割れ進展エネルギーを算出した.

4 ひび割れ面積算出方法

載荷終了後,剥離箇所のひび割れ面積測定を行った. 供試体表面を写真撮影し,図-2に示すように,CAD 上で剥離ひび割れを三角形の集合で近似して,各辺の 長さを求めた.このトレース図はコンクリート表面へ の投影図となっているため,三平方の定理を用いて図 -2網掛部三角形の三辺の長さを求め,ヘロンの公式

図-2 剥離ひび割れ面積算出モデル

によりこの面積を算出した.各三角形の面積の総和を 剥離ひび割れ面積とした.軸ひび割れについては、(ひ び割れ長さ)×(かぶり)を軸ひび割れ面積とした. 算出された2つの面積の和をひび割れ面積Aとした.

5 実験結果と考察

5.1 ひび割れ進展エネルギー算出結果

実験終了時のひび割れ進展エネルギーの平均を表 -1に示す. Usはかぶりが大きいほど大きく、内圧 導入長さが大きいほど小さいことが分かる.上記で述 べたように、Us=A・GFで表されるため、GFを一定値 とすれば、かぶりが大きいほど、また内圧導入長さが 小さいほどひび割れ面積が大きいことを表している.

5.2 ひび割れ面積算出結果

実験終了時のひび割れ面積算出の平均を表-2に示

Satoshi TAKAYA, Kousuke ARAKI, Takashi YAMAMOTO, Atsushi HATTORI and Toyoaki MIYAGAWA

す.表を見ると、かぶりが大きいほどひび割れ面積が 大きく、内圧導入長さについては傾向が見られないこ とが分かる.これは、 $\mathbf{表}-1$ に示したひび割れ進展エ ネルギーの傾向とは異なる傾向であり、本実験では \mathbf{G}_{F} を一定値と考えた場合、 $\mathbf{U}_{\mathrm{S}}=\mathbf{A}\cdot\mathbf{G}_{\mathrm{F}}$ の関係は成立しな いことを示している.そこで、ひび割れ進展エネルギ ーをひび割れ面積で除すことにより、 \mathbf{G}_{F} を算出し、か ぶりおよび内圧導入長さが \mathbf{G}_{F} 'に与える影響について 検討することとした.算出した \mathbf{G}_{F} 'をかぶりおよび内圧 導入長さ毎に整理したものを $\mathbf{表}-\mathbf{3}$ に示す.かぶりが 大きいほど \mathbf{G}_{F} 'は大きく、また内圧導入長さが大きいほ ど \mathbf{G}_{F} 'は小さい傾向がある.

5.3 剥離ひび割れ破壊エネルギー(G_F')

コンクリート破壊エネルギー G_F は、引張により単位 面積のひび割れを生じさせるために必要なエネルギー であり、土木学会では設計基準強度と粗骨材最大寸法 から算出する式を提案している³⁾.この提案式による 本実験で用いた供試体の G_F は71.1N/mであり、5.2 で算出した G_F '値とは差がある、土木学会では G_F のば らつきが大きいことが確認されている⁴⁾. G_F 'が土木学 会算出式による値と相異する原因として、このばらつ きが考えられるが、一方、 G_F 'は引張による破壊エネル ギー以外のエネルギーや、ひび割れの面積測定誤差を 含んでいるとも考えられる。そこで、 G_F 'を剥離ひび割 れ破壊エネルギーと定義し、 G_F 'をかぶり(C)および 弾性体長さ(L)を用いて算出する算定式の開発を試 みた。

5. 4 G_F'算定式の提案

 G_{F} を土木学会で提案されている式から算出した G_{F} で除した比(α)を表-4に示す. α をかぶりおよび 内圧導入長さ毎に整理した結果を図-3に示す. かぶ りと α の関係は弾性体長さ毎に切片0の線形近似でき, G_{F} はかぶりと弾性体長さを用いて,下記の式より算出 できることが分かった. ただし, CおよびL:mm, G_{F} ' および G_{F} : N/mとする.

$$G_{\rm F}' = (-8.4 \times 10^{-4} \,{\rm L} + 0.21) \times {\rm C} \times {\rm G}_{\rm F}$$
 (1)

内圧導入長さは鉄筋腐食長さに相当することから, 式(1)はかぶり,腐食長さおよび土木学会算出式によ るG_Fから,剥離ひび割れ単位面積当たりの破壊エネル ギーを算出する式といえる.今後さらに検証が必要で あるが,U_Sの経時変化の予測式を確立し,G_F,で除す

表-1	ひび割れ進展エネルギー	(kN ·	• mm)
-----	-------------	-------	-------

	L50	L100	L150	L200
C10	0.88	14.88	24.54	68.96
C20	0.84	5.49	18.41	42.46
C30	1.27	3.76	13.62	22.66

表-2 ひび割れ面積算出結果 (mm²)

	L50	L100	L150	L200
C10	18150	17485	22149	22395
C20	47145	45782	34597	44827
C30	67206	60761	83846	119287
	u			

表-3 G_F'=U_S/A (N/m)

	L50	L100	L150	L200
C10	55.3	50.7	55.0	57.6
C20	291.5	116.3	74.1	70.1
C30	336.6	332.8	80.0	114.6

表一4 $\alpha = G_F'/G_F$

	L50	L100	L150	L200
C10	0.8	0.7	0.8	0.8
C20	4.1	1.6	1.0	1.0
C30	4.7	4.7	1.1	1.6

図-3 かぶり・内圧導入長さとαの関係 ことにより、剥離ひび割れ面積Aを予測できる可能性 がある.

参考文献

- 高谷哲,荒木弘祐,服部篤史,宮川豊章:弾性体 を用いた鉄筋腐食膨張圧モデル化の実験的検証, 土木学会年次講演会,5-275,2004
- 2) 高谷哲,荒木弘祐,服部篤史,宮川豊章:コンク リート破壊エネルギーGF算出方法に関する研究, コンクリート工学年次論文報告集,Vol27,2005
- 3) 土木学会:2002 年制定コンクリート標準示方書[構 造性能照査編]
- 4) 土木学会:2002 年版コンクリート標準示方書改訂 資料