メタンハイドレート飽和度を考慮した弾粘塑性地盤の分解-変形連成解析

京都大学大学院	学生会員	0	伏田 智彦
京都大学大学院	正会員		木元 小百合
京都大学大学院	フェロー会員		岡 二三生
京都大学大学院	学生会員		藤脇 昌也

3. 三軸圧縮試験のシミュレーション

提案した弾粘塑性構成式中の MH パラメータの影響を調 べるため、排水三軸圧縮試験のシミュレーションを行った. ここではサクションおよび温度の影響は考慮しない. 飽和 土中に MH が存在するとし、軸ひずみ速度 0.005 %/min でせん断したときの変形特性を調べる.

表1 解析に用いたパラメータ				
初期間隙率	n_0	0.47		
初期平均有効応力	σ'_{m0}	1150 (kPa)		
静止土圧係数	K ₀	1.0		
初期せん断弾性係数	G_0	53800 (kPa)		
粘塑性パラメータ	m'	23.0		
粘塑性パラメータ	C_0	$3.5 \times 10^{-9} (1/s)$		
変相応力比	M_m^*	1.09		
先行圧密応力	σ'_{mbi}	1150 (kPa)		
圧縮指数	λ	0.169		
膨潤指数	κ	0.017		
内部構造パラメータ	σ'_{maf}	1150 (kPa)		
内部構造パラメータ	β	0.0		
MH パラメータ	S_{ri}^H	0.65		
MH パラメータ	n_m	0.4		
MH パラメータ	n_d	0.15		

解析結果を図 1,図 2 に示す.図 1 より,MH 飽和度が大きいほど体積圧縮ひずみが小さい.図 2 より,MH 飽和度が大きいほど軸差応力が大きくなり,強度特性の MH 飽和 度依存性を表現している.本研究では n_m , n_d についてパラメトリックスタディを行い,松居ら³⁾ による CO_2 ハイドレート混合砂を用いた排水三軸試験の実験結果を参考にして $n_m = 0.4$, $n_d = 1.5$ とした.

多孔質媒体理論(TPM)に基づき,MH含有地盤を多 相混合体として支配方程式を定式化する.支配方程式とし てつりあい式,液相および気相の連続式,エネルギ保存則 を考える.さらに,Cauchy応力のJaumann速度を用いた updated Lagrangian 法により有限要素離散化を行う.未 知数は変位,水圧,ガス圧,温度であり,変位は8節点, その他については4節点のアイソパラメトリック要素を用

1. はじめに

近年,メタンハイドレート(以下,MHとする)が新し いエネルギ源として注目されている.本研究では,MH 飽 和度依存性を導入した弾粘塑性構成式を提案し,サクショ ン依存性,温度変化の影響も構成式中に導入した.そして, 分解時の相変化,熱の移動,土骨格変形を考慮した分解-変 形連成有限要素解析法を開発し,MH 分解時の地盤変形挙 動の予測を行った.

2. 多相系地盤における弾粘塑性構成式

過圧密領域と正規圧密領域とを区別する過圧密境界面 $f_b = 0$ の存在を仮定し、さらに静的降伏関数 $f_y = 0$ を次 式で定義する. σ'

$$f_{b} = \bar{\eta}^{*} + M_{m}^{*} \ln \frac{\sigma_{m}}{\sigma_{mb}'} = 0$$
 (1)

$$f_y = \bar{\eta}^* + \tilde{M}^* \ln \frac{\sigma'_m}{\sigma'^{(s)}_{m_y}} = 0$$
 (2)

ここで、 $\bar{\eta}^*$ は相対応力比で初期の応力比に対する現在の応力比を表す。 \tilde{M}^* はダイレイタンシー係数である。 σ'_{mb} は硬化パラメータであり、山崎¹⁾は σ'_{mb} において内部構造の変化およびサクション依存性を考慮している。本研究では、この σ'_{mb} の中で MH 依存性を考慮する。

$$\sigma'_{mb} = \sigma'_{ma} \exp\left(\frac{1+e}{\lambda-\kappa}\varepsilon^{vp}_{kk}\right) \\ \times \left[1+n_m \exp\left\{-n_d\left(\frac{S^H_{ri}}{S^H_r}-1\right)\right\}\right] \quad (3)$$

$$= \sigma'_{ma}(S_r^H) \exp\left(\frac{1+e}{\lambda-\kappa}\varepsilon_{kk}^{vp}\right) \tag{4}$$

ここで S_{ri}^{H} は初期 MH 飽和度, n_m は初期ハイドレート飽 和度 S_{ri}^{H} が作用しているときの強度増加率で, n_d は強度 の変化速度を調節するパラメータである.また,静的硬化 パラメータ $\sigma_{my}^{'(s)}$ においても MH 依存性を考慮し,以下の ように表されるとする.

$$\sigma_{my}^{'(s)} = \frac{\sigma_{ma}^{'}(S_r^H)}{\sigma_{mai}^{'}} \sigma_{myi}^{'(s)} \exp\left(\frac{1+e}{\lambda-\kappa}\varepsilon_{kk}^{vp}\right)$$
(5)

ひずみ速度依存性挙動を表現できる粘塑性ストレッチング テンソル D_{ii}^{vp} を次のように表す.

$$D_{ij}^{vp} = C_{ijkl} \exp\left\{m'\left(\bar{\eta}^* + \tilde{M}^* \ln \frac{\sigma'_m}{\sigma'_{mb}}\right)\right\} \frac{\partial f_p}{\partial \sigma'_{kl}} \qquad (6)$$

なお、上式の粘塑性パラメータ C_{ijkl} 中に温度変化の影響 ²⁾を考慮する.ここで、 $f_p = 0$ は粘塑性ポテンシャル関数 である.

Tomohiko FUSHITA, Sayuri KIMOTO, Fusao OKA, Masaya FUJIWAKI

いるものとする. 応力変数として平均化骨格応力 (Average skeleton stress)を用いる. サクションと飽和度の関係で ある水分特性曲線を構成式として用い, van Genuchten 式 により定義するものとする.なお、水とメタンガスの流れ は Darcy 則に従い, MH の分解速度は Kim-Bishnoi 式に より与えられる. 非排気・排水

5. 解析例

解析モデルは図3に示す一次 ##%・ 元5要素とする.加熱法では、下 面の水圧,ガス圧を11MPa,熱 源の温度を初期282Kから20000 秒後に303Kに上昇させる.減圧 法では,下面の水圧,ガス圧を

解析モデル

初期 11MPa から 18000 秒後に 4MPa に減圧させ、熱源の 温度は282K一定とする.また、減圧法ではサクション依 存性を考慮しない. 解析に用いたパラメータを表2に示す. **1) 加熱法** 図 4~7 に加熱法の解析結果を示す. 図 4 は要 素内の MH 物質量を示している.熱源に近い要素から順に 分解し、分解に要する時間が短い.また、図5より、各要 素の分解は温度一定(約286K)で進行することが分かる. 図6より、分解直後にガス圧は上昇する.この時、水圧は 減少している.ガスの透気性は比較的高いため、短時間で 消散する.一方,水圧の減少は大きいため,平均間隙圧が 減少する. その結果, 平均骨格応力が増加し, 沈下が生じ ている. 分解終了後には応力状態はほぼ初期状態に戻り, 弾性変形は回復するが、粘塑性変形が残留していることが 分かる (図7).

2) 減圧法 図 8~図 11 に減圧法の解析結果を示す. 熱の 供給が下面の初期温度一定の熱源からのみであり、熱源の 温度も高くないため、要素1に比べ、要素2は分解に要す る時間が長くなっている(図8).また,要素3以降は分 解していない. 温度は要素1の分解中に減少するが、分解 終了後に初期温度(282K)に戻る(図9).分解中にガス 圧は上昇している(図10).この時、水圧は減少している. 加熱法と比べて分解速度が遅いため、ガス圧は少ししか上 昇しない.減圧と分解により、平均間隙圧が減少する.そ の結果,平均骨格応力が増加して,沈下が生じる.

6. まとめ

MH 飽和度依存性を導入した弾粘塑性構成式を用いて, 加熱法・減圧法による MH 分解時の地盤変形挙動の予測を 行った.結果として、MH 飽和度の減少に伴う強度低下を 考慮することにより沈下量が増大した.減圧法の場合は, 減圧そのものによる変形が大きく生じるため、減圧圧力, 減圧速度等の設定の際には注意が必要である.

表2 解析に用いたパラメータ

初期 MH 飽和度	S_{r0}^H	0.634
初期温度	θ_0	282.0 (K)
初期平均有効応力	σ'_{m0}	1150 (kPa)
初期間隙圧力	P_{s0}	11000 (kPa)
初期飽和度	^s 0	1.0
最大有効飽和度	smax	1.0
最小有効飽和度	s_{min}	0.0
水分特性曲線のパラメータ	α	0.0025 (1/kPa)
水分特性曲線のパラメータ	n	10
透水係数	k^W	$1.0 \times 10^{-9} (m/s)$
透気係数	k^G	$1.0 \times 10^{-8} (m/s)$
熱粘塑性パラメータ	α	0.15
サクションパラメータ	S_I	0.2
サクションパラメータ	s_d	0.25
サクションパラメータ	P_i^C	100 (kPa)
MH パラメータ	n_m	0.4
MH パラメータ	n_d	1.5
MH パラメータ	S_{ri}^H	0.65

参考文献

 山崎順弘:弾粘塑性地盤の多相連成変形解析法,京都大学大学院修士論文, 2005.2) Yashima, A., Leroueil, S., Oka, F. and Guntoro, I. : Modelling temperature and strain rate dependent behavior of clays : one dimensional consolidation, Soils and Foundations, Vol.38, No.2, 1998. 3) 松居,兵動,中田,吉本,武富:砂中における二酸化炭素ハイドレートの生成と 力学特性, 第 40 回地盤工学研究発表会講演集, 函館, pp.423-424, 2005. 4) 藤 脇、木元、岡、山崎:メタンハイドレート分解による多相地盤の変形シミュレーショ ン, 平成 17 年度土木学会関西支部年次学術講演会講演概要集, 大阪, Ⅲ-47, 2005.

