第Ⅲ部門

サクション解放による劣化を考慮した堤防の浸透・変形連成解析

学生会員	○山崎 真也
フェロー会員	岡 二三生
正会員	小高 猛司、木元 小百合
学生会員	浅井 良太、高田 直明
	学生会員 フェロー会員 正会員 学生会員

<u>1.はじめに</u>

洪水時の堤防の変形・破壊を予測することは防災上 重要である。堤防は通常不飽和状態にあり、不飽和土 はサクションの影響を強く受け、サクションの解放に より強度が低下することが知られている。本研究では、 堤防の浸透変形解析を行うにあたり、飽和土の構成式 にサクションによる強度変化を考慮することで不飽和 土の構成式に拡張し、堤防の浸透・変形連成解析を行っ た。

2.サクションの影響を考慮した不飽和土の構成式

岡ら¹⁾による飽和砂の繰返し弾塑性構成式を不飽和 砂の構成式に拡張するため、まず応力変数として平均 化骨格応力(Average skeleton stress)σ_{ij}を用いる。

$$\sigma'_{ii} = \sigma_{ii} - p^F \delta_{ii} \tag{1}$$

ここで、 σ_{ij} は全応力テンソル、 p^{r} は平均間隙圧力、 δ_{ij} はクロネッカーのデルタである。平均間隙圧力は以下の式で表される。

$$p^{F} = S_{r}p^{f} + (1 - S_{r})p^{a}$$
(2)

ここで S_{r} は飽和度、 p^{r} , p^{a} はそれぞれ液相、気相には たらく圧力である。平均化骨格応力テンソルの第一不 変量の 1/3を平均骨格応力(Mean skeleton stress)と呼 ぶ。サクションによる強度増加を表現するために、過 圧密境界曲面 f_{b} 中の硬化パラメータ σ_{mb} と非線形移動 硬化パラメータ χ_{ij}^{*} 中の移動硬化の速度を決めるパラメ ータである硬化パラメータ B^{*} にサクションによる影響 を考慮した。

過圧密境界曲面…正規圧密領域と過圧密領域を区別す る曲面

$$f_b = \overline{\eta}_{(0)}^* + M_m^* \ln \frac{\sigma_m}{\sigma_{mb}} = 0$$
(3)

$$\sigma_{mb}^{'} = \sigma_{mbi}^{''} \exp\left(\frac{1+e_0}{\lambda-\kappa}v^p\right) \left[1+S_I \exp\left\{-s_d\left(\frac{P_i^c}{P^c}-1\right)\right\}\right] \quad (4)$$
$$\sigma_{mbi}^{''} = (\sigma_{mbi}^{'}-S_F P_i^c) \times OCR^* \qquad (5)$$

ここに、
$$\overline{\eta}_{(0)}^* = \left\{ (\eta_{ij}^* - \eta_{ij(0)}^*) (\eta_{ij}^* - \eta_{ij(0)}^*) \right\}^{l_2}$$
で、応力比テンソル

 $\eta_{ii}^* = S_{ii} / \sigma_m^*$ 、 M_m^* は変相時の応力比の値である。 $\sigma_m^{'}$ は平

均骨格応力、 σ'_{mbi} は飽和土の場合の σ'_{mb} の初期値、OCR^{*} は擬似過圧密比である。 S_I, S_d はサクションによる強度 変化を表すパラメータで、 P_i^c は初期サクションである。 降伏関数…弾性域と弾塑性域を区分する曲面

$$f = \left\{ \left(\eta_{ij}^* - \chi_{ij}^* \right) \left(\eta_{ij}^* - \chi_{ij}^* \right) \right\}^{\frac{1}{2}} - k = 0$$
(6)

kは弾性域を表す数値パラメータで、 χ_{ij}^* は非線形移動 硬化パラメータである。 χ_{ij}^* は次式で与えられる。

$$d\chi_{ii}^{*} = B^{*}(A^{*}de_{ii}^{p} - \chi_{ii}^{*}d\gamma^{p^{*}})$$
(7)

ここに、 A^*, B^* は材料パラメータ、 de^p_{ij} は塑性偏差ひず み増分テンソル、 $d\gamma^{p^*}$ (=($de_{kl}{}^p de_{kl}{}^p$)¹²)は塑性偏差ひずみ 増分テンソルの第2不変量である。 B^* の初期値である B^*_0 にサクションによる影響を考慮した。 S_{IB}, S_{db} はサク ションによる強度変化を表すパラメータである。

$$B_{suc}^{*} = B_{0}^{*} \left[1 + S_{IB} \exp\left\{ -s_{db} \left(\frac{P_{i}^{c}}{P^{c}} - 1 \right) \right\} \right]$$
(8)

3.堤防の浸透変形解析

解析に用いたプログラムは液状化解析コード LIQCA2D-04²⁾を不飽和浸透問題に拡張した LIQCA2D-SF³⁾である。解析に用いたパラメータを表1 に示す。図1に用いた解析モデルを示す。天端5m、高 さ 6m、勾配 1:2 の堤体モデルである。初期地下水位面 は地表面に一致しており、水位上昇速度 1/3(m/hour) として河川の水位上昇をシミュレートした。天端到達 後は水位は上昇せず、水位を一定に保つと仮定した。 ただし、降雨による堤防への浸透は考慮せずに、河川 水位上昇のみを考慮して堤防の浸透変形解析を行った。 堤防盛土部の初期飽和度を 60%、水分特性曲線として は van Genuchten の式を採用している。サクションパ ラメータを変えて解析を行った。この時の解析ケース と破壊までの時間を表2に示す。Case1は基本ケース でサクションによる劣化を考慮していない。Case2 と Case3 はサクションによる劣化を考慮するが、強度変

Shinya YAMAZAKI, Fusao OKA, Takeshi KODAKA, Sayuri KIMOTO, Ryota ASAI, Naoaki TAKADA

化の速度を調節するパラメータである*s_d,s_{db}*が異なる。 本研究では液状化での基準を考慮し、偏差ひずみテン ソルの第二不変量(以下偏差ひずみと呼ぶ)が 5%に到 達した時点で浸透破壊が生じたと仮定した。

時間の経過にともなう Case1、Case2 の飽和度分布 を図2に示す。水位上昇により、水が川表から川裏へ と浸透していく様子が観察できる。Case1 が破壊に達 する 93 時間後には川裏まで水が浸透し堤防内がほと んど飽和状態になっている。Case1 と Case2 とで飽和 度には大きな違いはなく、サクションによる劣化の考 慮は水の浸透には大きな影響を与えないと考えられる。 図 3 から図 6 に Case1 および Case2 の偏差ひずみ分 布を示す。図 3.4 を見ると、どちらも浸潤面に沿って 偏差ひずみが発生し、最終的には川裏法尻部分で偏差 ひずみが大きく発生していることがわかる。また、サ クションの影響を考慮した Case2 のほうが浸潤面に沿 ってより大きな偏差ひずみが発生していることが観察 できる。しかし図 5,図 6 を見てみると、Case1 では川 裏法尻部が破壊しているが、サクション解放による劣 化を考慮した Case2 では川表法面が早く破壊している。 サクション解放によって川表の強度が低下したためと 考えられる。破壊時間を見てみると、劣化を考慮した ことにより破壊到達時間が早くなり、また Case2 と Case3 ではサクションパラメータ s_a, s_a の違いで破壊 時間に大きな差が出ている。

<u>4.まとめ</u>

岡ら¹¹による飽和砂の弾塑性構成式にサクションの 影響を考慮して不飽和砂の構成式を提案した。提案し た構成式を用いて堤防の浸透変形シミュレーションを 行った結果、サクション解放による劣化を考慮するこ とにより最大ひずみの生じる場所、時間が異なった。 また、サクションによる強度変化速度を調節するパラ メータである*s*_d,*s*_dが大きいほど破壊に達する時間が 早くなった。本研究で提案した方法は浸透変形に与え るサクションの効果を表現することが可能であると考 えられる。

[参考文献]

1)Oka et al.: *Géotechnique*, 49(5),661-680, 1999. 2)液 状化解析手法LIQCA開発グループ:LIQCA2D04(2004 公開版)資料, 2004. 3)加藤亮輔,岡二三生,小高猛司,角 南進,木元小百合:河川堤防の不飽和浸透 - 変形連成解 析,第 40 回地盤工学会概要集,pp.939-940, 2005. [謝辞]

本研究費の一部は国土交通省の平成 17 年度建設技術

研究助成によった。記して謝意を表わす。

