第 I 部門 二軸曲げを受ける RC 柱の耐震特性に関する帯鉄筋量による影響

大阪市立大学大学院工学研究科 学生員 〇北田 裕久

大阪市立大学大学院工学研究科(JIP テクノサイエンス(株)) 正会員 佐藤 知明

大阪市立大学大学院工学研究科 正会員 角掛 久雄

(株) オガノ 正会員 島田 功

1. はじめに

既往の研究では、二軸曲げ作用下での帯鉄筋による拘束効果に関する研究はあまり見受けられない。そこで、本研究では、破壊領域付近の拘束状態を把握するために、帯鉄筋量に着目した実験を実施し、それに対して解析的検討を行うものである。一般的に二軸曲げを受ける RC 柱の解析的検討においては、ファイバーモデルを用いて検討されていることが多い。しかしながら、ファイバーモデルで用いられる応力ーひずみ関係は元来、一軸曲げに対するものであり、二軸曲げへの適用を十分に検討されていないように思われる。そこで、3 次元非線形FEM 解析を用いて、実験ではわからない柱内部の応力やひずみ状態を推定することを目的とする。

2. 実験概要

基準供試体(供試体名:R6-90)としては図-1 に示すように 250×250 mm の正方形断面に対して、柱の主筋には D13 を 8 本配置し、帯鉄筋には R6 を 90 mm 間隔で配置した. なお、フーチング上面から載荷点までの高さは 800 mm である. 実験は、基準供試体に対し、単位長さあたりの帯鉄筋量を 2 倍程度と想定し、帯鉄筋径と帯鉄筋間隔を変化させ、計 3 体実施した. 供試体の概要およびコンクリートと鉄筋の材料特性を表-1 に示す.

載荷方法は,以下のような順序で載荷させている.

載荷 1: 一定軸力 N を RC 柱に導入する.

載荷 2: 一定強度の Y 方向荷重 F_Y を載荷する($\mathbf{図}-\mathbf{2}$ 参照).

載荷3:X方向への正負交番載荷を実施する(図-2参照).

なお、軸力 N は 1.0 MPa とし、Y 方向一定荷重強度 F_Y は、一軸曲げを受ける場合の初降伏荷重強度 P_{y0} に対する 0.66 倍の 29.1 kN とした。X 方向への載荷は、載荷点位置に設置した変位計にて変位制御で実施した。

3. 解析モデル

解析モデルは、コンクリートを Solid 要素、鉄筋 を Beam 要素とし、両者が完全剛結するものとしてモデル化した.材料条件は $\mathbf{表}-\mathbf{1}$ の各材料試験結果をもとに $\mathbf{Z}-\mathbf{3}$ に示すように、モデル化した.この時の鉄筋の第二次勾配は初期勾配の $\mathbf{1}$ %として与え

4. 解析結果

4.1.実験値との比較

基準供試体(供試体名: R6-90) に対する,解析による X 方向荷重-変位曲線を図-4 に示す.解析では単調載荷かつ,

図-1 基準供試体

表-1 供試体概要および材料特性

竹水九刀			土虾劢 (D13)		コンフリート		
径	間隔 (mm)	断面高さ あたりの 拘束鉄筋量 (mm²)	ヤング 係数 (GPa)	降伏強度 (MPa)	ヤング 係数 (GPa)	圧縮強度 (MPa)	ヤング 係数 (GPa)
R6	90	78.6	167 6			24. 2	23.8
R8	90	141. 3	107.0	358	186. 9	25. 7	24. 7
R6	50	139. 6	185. 5			24.6	23.9
	R6 R8	径 間隔 (mm) R6 90 R8 90	程 間隔 あたりの 拘束鉄筋量 (mm)	径 間隔 断面高さ あたりの 拘束鉄筋量 (GPa) R6 90 78.6 R8 90 141.3 167.6	径 間隔 断面高さ カたりの	程 間隔 断面高さ カたりの 特束鉄筋量 (GPa) (MPa) (GPa) (程 間隔 あたりの 特束鉄筋量 (MPa) (MPa) (MPa) (MPa) (MPa) (E縮強度 (MPa)

(a) コンクリート(単軸状態) (b) 鉄筋 図-3 応力-ひずみ曲線

Yasuhisa KITADA, Tomoaki SATO, Hisao TSUNOKAKE and Isao SHIMADA

約 5mm の変位までしか実施していないが、類似した傾向を示しており、 最大荷重値もほぼ近似した値となった.

次に、塑性ヒンジ長のほぼ中央にあたる高さに配置された帯鉄筋の X 軸正方向側のひずみと X 正方向への荷重強度との関係を図-5 に示す. なお、実験値は包絡線で示す.解析結果においては、Y 方向荷重導入時のひずみの増加が現れたものの、荷重 20 kN 付近までの傾きはほぼ近似している.しかし、約 20 kN 以上になると、大きく異なる結果となった. ただし、図-4 において、実験および解析ともに約 20 kN において初降伏と見られる変化点があり、全体の挙動としては近似していることから、ここでは鉄筋とコンクリートの結合条件の差異が影響しているものと考えられる.つまり、解析では鉄筋とコンクリートの結合条件を剛としているため、コンクリートのひびわれや主鉄筋の降伏による影響が大きく反映されたものと考えられる.

図-5 X 方向荷重-帯鉄筋ひずみ曲線

4.2.コンクリート内部状況

塑性ヒンジ高さ (0.5D=125 mm) における柱横断面の終局状態での鉛直ひずみ分布を図-6 に示す. 帯鉄筋間隔が等しい, R6-90 と R8-90 は非常に近似している. R6-50 において類似した傾向を示しているが、引張ひずみ (赤系統の分布) の分布に差異が見られ、Y方向正側 (図の右上) にも大きなひずみが生じている.

次に、帯鉄筋による拘束効果の立体的の違いをみるために、基部付近において、帯鉄筋が配置されている横断面と帯鉄筋が存在しない断面について着目した.図 -7 に示すように断面拘束領域の中で、圧縮状態が最も顕著に現れる位置(×印)での鉛直方向での応力 - ひずみ関係を図 -8 に示す.同図においては黒の点線として道路橋示方書¹⁾(以下、道示という)に記されている拘束効果式を R8-90 に対して適用したコンクリート値を示した.

帯鉄筋なしの断面は帯鉄筋ありの断面 よりひずみが約 500μ 以降は応力が低めの 結果となったが、それ以前は断面の違い および帯鉄筋量による顕著な違いは見受けられなかった。帯鉄筋ありとなしのそれぞれの断面においてひずみが 1100μ お

図-7 着目位置 図-8 柱内部での応力-ひずみ関係

よび 1400μ 付近を超えたあたりから応力が増加する傾向にあり、断面位置の違いによる応力の差が大きくなっている。 設計式である、道示と比較すると帯鉄筋なしの断面の値と近似している結果となり、 2 方向曲げに対する設計にも適用可能であると考えられる。

5. まとめ

柱内部における応力ーひずみ関係について検討を行った結果、二軸曲げ作用下での帯鉄筋量の違いによる拘束 効果の影響は同一断面内では顕著な違いは見られないものの、作用荷重が増加するにつれて、帯鉄筋配置断面と 帯鉄筋が存在しない断面とでは拘束効果に差異が存在し、道示では安全側をとっていることがわかった.

参考文献:1)日本道路協会:道路橋示方書・同解説V耐震設計編, pp.160-161, 2002.