第Ⅲ部門 浸水時における河川堤防の液状化解析

京都大学大学院	学生員()田中 智太郎
京都大学大学院	フェロー	岡 二三生
京都大学大学院	正会員	小高 猛司
京都大学大学院	学生員	浅井 良太

20m

<u>1. はじめに</u>

環太平洋造山帯に属する日本は元来地震災害が多い一方 で、水害にも恒常的に見舞われている。河川堤防は洪水時 に最も決壊の恐れが高まるが、そこに地震が加わるとさら に危険性が増すことが予想される。実際、2004年の新潟県 中越地震では河川堤防も多大な被害を受けたが、その直前 の台風23号による洪水が被害を拡大したと言える。

このような観点から本研究では、浸水時における河川堤防の耐震性の評価を行う。具体的には、飽和・不飽和浸透変形解析¹⁾で得られる浸潤線によって、浸水の程度の異なる河川堤防を3種類設定し、動的有効応力解析によって耐震性能を比較検討する。

<u>2. 解析条</u>件

図1は解析に用いた地盤モデルである。実在の河川堤防の断面をモ デル化したもので、砂礫層と砂質シルト層からなる水平基礎地盤と盛 土部とで形成されるとした。地震応答解析は、液状化解析コード LIQCA2D-01²⁾を用いた。表1に解析に用いたパラメータを示す。これら は現地採取試料の土質試験結果と要素シミュレーションから決定され ている。まず、初期水位が地表面に一致した状態で地震応答解析を行 い、次に不飽和浸透変形解析 LIQCA-SF¹⁾により河川の水位上昇をシミュ レートし、各浸水状態での有効応力分布を初期条件として地震応答解 析を行った。盛土内の浸潤線の進行程度によって解析ケースを3段階

(浸透レベル 0~2)に分けて解析を行った(Case1-0~Case1-2)。それ
(福yhěny & Que & 0.00
(日本)

表1解析に用いたパラメータ

	沖積礫質土	シルト(地盤)	砂質(盛土)	
初期間隙比 eo	0.647	0.780	0.923	
圧縮指数 λ	0.030	0.020	0.030	
膨潤指数 <i>к</i>	0.0020	0.0025	0.0020	
初期せん断係数比 G₀/ σ' m₀	918.4	369.3	746.4	
透水係数 k/γ _w (kN/m ² ·s)	1.02×10^{-4}	8.67×10^{-5}	8.67×10^{-5}	
重力加速度 g(m/s ²)	9.8	9.8	9.8	
密度 ρ(t/m ³)(湿潤、飽和)	2.10	1.89, 1.92	1.74, 1.89	
変相応力比 M _m	1.200	1.150	1.120	
破壊応力比 M _f	1.500	1.450	1.370	
硬化関数中のパラメータ B ₀	4000	2500	3000	
硬化関数中のパラメータ B ₁	40	25	30	
硬化関数中のパラメータ C _f	0	0	0	
水の体積弾性係数 K _f	2.00×10^{5}	2.00×10^{5}	2.00×10^{5}	
擬似過圧密比 OCR	1.0	1.2	1.2	
異方性消失のパラメータ C _d	2000	2000	2000	
ダイレンタンシー係数 D ₀ ,n	1.0, 2.0	1.0, 1.3	1.0, 1.3	
塑性基準ひずみ γ _{ref} P	0.010	0.008	0.010	
弾性基準ひずみ γ _{ref} ^E	0.050	0.080	0.100	
初期応力解析				
ヤング係数 E(kPa)	7.38×10^{5}	1.50×10^{5}	8.80×10^{4}	
ポアソン比 ν	0.333	0.333	0.258	
内部摩擦角 Φ'	30	35	35	
粘着力 c (kPa)	0	10.0	10.0	
Newmarkのβ法の係数 β	0.3025			
Newmarkのβ法の係数 γ	0.6			
Rayleigh減衰の係数 α ₀	0.0			
Ravleigh減衰の係数 α	0.0050			

Tomotaro TANAKA, Fusao OKA, Takeshi KODAKA, and Ryota ASAI

4. 解析結果と比較

Case1~Case3 それぞれの場合において、浸 透レベルを変えて地震応答解析を行った。ま ず Case1 において浸透の進行程度による挙動 の違いを考察する。

図4は、Case1-0、Case1-1、Case1-2 にお ける(-0~-2 は浸透レベルを示す),地震発 生15秒後の相対有効応力減少比(=1-現在 の平均有効応力/初期平均有効応力)の分布 である。Case1-0 では川裏側の堤体法尻直下

付近のみで液状化しているのに対し、盛土内に浸水している Case1-1 では川表側法尻直下でも液状化している。 さらに浸透が進んだ Case1-2 では、より広範囲にわたり液状化していることがわかる。図5は、Case1の各浸透レ ベルにおける 30 秒後の各要素の偏差ひずみテンソルの第2不変量の分布である。Case1-0 では川裏側の堤体下部 にわずかに偏差ひずみが見られるのに対し、Case1-1 では川表側堤防下部や川表側堤防法面においても、0.04 程 度の偏差ひずみが生じている。最も浸透が進んだ Case1-2 においては、堤防天端から川表側法面全体に0.10 以上 の大きな偏差ひずみが見られる。図6は Case1の 30 秒後の変形図である。Case1-0 と比較して、盛土部に浸水が ある Case1-1、Case1-2 では川表側の変形が卓越している。図7 は天端中央の沈下量の時刻歴である。Case1-0 と Case1-1では10.3cm、10.9cm とそれほど違いはないが、Case1-2では24.7cm と大きく沈下している。これは、Case1-1 では法尻部の局所的な変形にとどまっているのに対し、Case1-2では堤体全体に変形が及んでいるためである。

図 6 変形図 (Case1-0~Case1-2) (30 秒後) (変位 5 倍)

次に,浸透レベルを2として,他の解析ケースとの比較を行う。 図8は, Case1-2, Case2-2, Case3-2の15秒後の相対有効応力減 少比の分布である。Case2-2はCase1-2に比べてより広範囲にわた って液状化が発生し,盛土内部にまで範囲が拡大している。これ は,透水係数を小さくしたことで過剰間隙水圧の消散が遅れた結 果と考えられる。入力加速度の正負を反転させて解析を行った Case3-2では, Case1-2とは逆方向の川表側で間隙水圧が大きく上 昇し,川表側堤体法尻で広範囲の液状化が確認された。天端中央 の沈下量は, Case1-2では24.7cm, Case2-2では30.2cmであり,

Case1-0 0.00 Case1 -0.05 Case1-2 -0.10E 沈下量(-0.15-0.20 -0.25-0.30-0.35 10 15 25 30 0 5 20 時間(秒)

図7 天端沈下量(Case1-0~Case1-2)

透水係数が小さい Case2 のほうがより大きな沈下が発生した。これは、Case2-2 では盛土内の浸潤線から下部全般 に液状化が発生しており、盛土の変形がさらに大きくなったためと考えられる。Case3-2 の天端沈下量は 25.4cm であり、地震波の方向が反転し、液状化の範囲が変わっても、沈下量にはそれほど大きな違いは見られなかった。

<u>5. まとめ</u>

本解析の結果,堤体が浸水している場合には, 地震に対する危険度が大きく上昇することが 確認できた。また浸水の進行程度によっても, 変形に大きな違いが出ることが確認された。

[参考文献] 1)加藤・岡・小高・角南・木元:河川堤防の不飽和浸透-変形連成解析,第40回地盤工学研究発表会概要 集(投稿中),2005.2)液状化解析手法 LIQCA 開発グループ(代表:岡二三生):LIQCA2D-01(2001年公開版)資料,2002.