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1. INTRODUCTION

The development of external prestressing has been one of the major trends in constructing and strengthening of bridge
beams over the past decade. The ultimate strength of extemall¥ ?restressed beams is comparatively less than that of the beams
in which the bonded tendons are arranged with similar profiles'™!. One method of enhancing the flexural strength of the beams
is to place the tendons with large eccentricity, by this method, either improvement in strength or amount of prestressing can be
achieved. Hamada, et.al has carried out an experimental investigation to study the flexural behavior of such single span
structures™. It is believed that, by extending this concept to continuous girders, the structural performance can be improved.
An experimental study was conducted on two span continuous beams with large eccentricity in reference [1], with emphasis on
the influence of tendon layout on ultimate strength and prestressing.

The ultimate flexural analysis of the beam with externally prestressed or unbonded tendon offers two additional difficulties,
first, the stress increment of tendon beyond the effective prestress due to applied loading is member-de[gehdent rather than
section-dependent, and secondly, there is a loss of tendon's eccentricity in the externally prestressed beam 1 Some researches
have been done to simplify the member-dependent to the section-dependent based on the concept of strain reduction coefficient
Qp 1 In this paper, a different method considering material nonlinearity, compatibility of tendon” deformation, and loss of
tendon's eccentricity is presented.

2. ASSUMPTIONS

The following assumptions are adopted in the analysis
(1) Plane section still remains plane after bending.
(2) Bonded tendon, steel and concrete are completely bonded.
(3) The te_nsile strength of concrete after cracking 1s ne'glected Fig.1 Equivalent loads of external tendon
(4) The friction between external tendon and deviator is neglected.
(5) The beam is in the elastic linear range during prestressing and before cracking.
(6) The stress-strain curves of concrete, steel and PC bar are taken from JSCE Standard (1996).

3. M-N- § RELATIONSHIP OF BEAM SECTION

The beam is referred to concrete beam not including external tendon in this paper. The action of external tendon is expressed
as the equivalent load applying on the beam as shown in the Fig.1, so the beam is subjected to axial force N and bending
moment M, therefore the secondary moment concept is not used in the analysis of external tendon by this method. There are
two kinds of loads applying on the beam, one is applied load; the other is tendon's equivalent load. M and N are caused by both
applied load and equivalent load. If there is secondary moment caused by bonded tendon in PC beam, in this case, secondary
moment is added into M.

The M-N-¢ relationship of a cracked section is calculated by the discrete element approach. In this approach, the section is
divided into a number of horizontal elements, each having the width of the section at that level. For the given curvature ¢ and
depth of compressive concrete zone x, summing up the forces and moments of concrete, steel and PC bar, the corresponding M,
N are obtained. For M, N known, adjusting different ¢ and x, until equilibriums of force and moment are achieved, then
corresponding x and ¢ are got.

4. THE ANALYSIS OF STRUCTURE

After concrete cracking, the stiffness changes along the beam, so the beam must be divided into enough elements to ensure
accurate results, especially in the area with a high shear force. It is assumed that the stiffness in each element is a constant and
equals to the stiffness at the maximum moment. If the incremental plasticity approach is used, the stiffness of a yielded section
is too small, in some cases; it can cause difficulty in calculation and result in unrealistic solution. Therefore the direct iterative
approach (successive approximation) is used in this paper (the entire load is applied at one time). The iterative calculation
method is as follows
(1) Calculate the equivalent concentrated loads of external tendon prestress force P at deviators and anchorage ends; Calculate
the displacements of deviators and anchorage ends due to this equivalent loads by elastic method according to the assumptions.
(2) Calculate M, N and displacements of each element due to the applied loads and equivalent concentrated toads of external
tendon prestress force P and its increment AP using the stiffness of each element given by step-3 in the previous iteration.
AP is assumed to be zero and the beam is assumed to be in the elastic range in the first iteration.

(3) Calculate the curvature ¢ using the relationship of M-N-¢ as shown by point 4 in Fig.2, if there are secondary moment
and axial force due to bonded prestressed tendons, they are added into M and A. The new stiffness is M/¢, that is the slope of
OA. In the calculation, M is perhaps greater than the ultimate moment of the section, in order to continue calculation, a new
small stiffness and depth of compressive zone x are given to this element. Stiffness is relevant to bending moment in statically
indeterminate structure. A large original stiffness for an element results in a large moment, so the new stiffness of this element
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is small. The actual stiffness is between the original one and new one. Therefor a jf

suitable stiffness between the new one (the slope of OA4) and the stiffness used in the

previous iteration is chosen as the stiffness for the next iteration. This suitable

stiffness can speed the convergence. The choice of value affects the number of

iteration, but does not affect the final results.

(4) Calculate the strain of external tendon by comparing the displacements of

deviators and anchorage ends calculated in step 2 and step 1. According to the PC bar

stress-strain  relationship, force increment AP and corresponding equivalent

concentrated loads are obtained, these loads are used in next iteration.

(5) Repeat step 2, 3 and 4 until the following convergence conditions are met
SIAPY APV S 1AP s SR =R S IRTVI<S

in which AP AP;" are the tendon force increments of ith external tendon for the #+1 and # iteration respectively; Rj("”}, R/

are the stiffness of the j# element for the n+1 and » iteration respectively; S is the given tolerance, 5=0.01 in calculation.

(6) Calculate the axial force and bending moment and nodal displacements of the structure.

The method presented in this paper meets the conditions of both M-N-¢ relationship of the section and compatibility of the
longitudinal deformation of external tendon. Because the force of the external tendon is regarded as its equivalent loads and is
calculated by comparing the different positions of deviators and anchorage ends before and after loading, so this method can
take account the loss of the eccentricity automatically. It can be used generally in any kind of structure with external tendons.

¥ >
Fig.2 The stiffness of an element

5. THE CALCULATION RESULTS

The symmetrical loading A-1, B-1, C-1 and unsymmetrical Joading A-2, B-2 beams!'! are analyzed. The experimental and
calculation results are summarized in Table 1, M: Mid span; C: Center support; E: Experiment result; A: Analysis result; L:
Left; R: Right. Fig.3 and 4 are load-mid span displacement curves of A-1 and A-2. The calculation results conform well to the
experiments, it shows this method is valid and accurate.

Table 1. Summary of experiment and analysis results

Cracking load Maximum load Ultimate deflection Ultimate tendon force
No. (KN) (KN) (mm) (KN)
M C L-span R-span L-span R-span L-end R-end
E A E A E A E A E A E A E A E A
A-1 1392 | 402 | 368 | 37.1 {1079 | 121.3 | 108.6 | 1213 | 827 | 119.1 | 826 | 119.1 | 117.1 | 117.5 | 116.6 | 1175
A-2 [ 342 | 338 | 392 | 405 | 88.1 | 91.2 | 47.6 | 456 | 11271 925 | -24.6 | -26.0 | 883 | 862 | 844 | 862
B-1 39.6 | 40.1 37.0 37.1 108.1 | 122.0 | 107.6 | 122,0 } 1102 | 1352 | 110.2 | 1352 | 1183 { 120.6 | 118.1 | 120.6
B-2 | 368 | 352 41.7 41.0 90.8 94 .0 49.6 47.0 150.2 | 102.6 | -314 | -26.6 | 96.1 89.4 86.3 89.4
C-1 1417 402 | 368 | 372 [ 1097 | 1195 1109 | 119.5 | 80.2 | 1182 | 80.0 | 1182 | 114.1 | 119.0 | 115.6 | 119.0
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Fig.3 Load-mid span displacement curve of A-1 Fig.4 Load-mid span displacement curve of A-2
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