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1. Introduction

Up to now, many constitutive models for clay have been proposed and studied based on the elasto-plastic or elasto-
viscoplastic theory and it has been recognized that the effect of time on the loading process is a salient feature. The
linear viscoelastic approach is valid for the behavior in the range of small strains, while viscoplastic modeling of soils is
useful in the wide range of strain including failure. In this study, a cyclic viscoelastic-viscoplastic model for clay based
on the nonlinear kinematic hardening rule as Oka’s model(1992) and Chaboche type non-linear kinematical hardening
theory is proposed.

2. Derivation of constitutive equation
Based on the Adachi and Oka(1982) model being a typical overstress model as well as the three parameter model
with Voigt element and elastic spring called the linear spring Voigt model, the elastic deviatoric strain rate tensor éf}f"

is 1
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where, éﬁ;" denotes the total viscoelastic deviatoric strain rate component tensor and it is composed of elastic deviatoric
strain rate component tensor €f; and viscoelastic deviatoric strain rate component tensor é}f. G and G is the first and
second elastic shear modulus, u is a coefficient of viscosity, and S;; is the deviatoric stress tensor (S;; = a;]- - U;n(s,'j).
Taking into account the deviatoric stress-strain relation, we can obtain the total deviatoric strain rate component
tensor included viscoelastic deviatoric strain rate component tensor since é;; = €/7° + é;F.
For overconsolidated clay, Oka(1982) developed an elasto-viscoplastic constitutive model based on an overstress type
viscoplasticity theory and the non-associated flow rule, and the viscoplastic model for overconsolidated clay was
extended to the cyclic model(1992). Considering the nonlinear kinematical hardening rule, static yield funtions are
given as follows: For changes in the stress ratio, the static yield funtion used is

fo = {(n:j - X:j)(":j - X:'Qj)}l/2 —Rgy =0 (2)

where, x}; is the kinematic hardening tensor and Rp is the scalar variable.
The evolutional equation for kinematical hardening tensor xj; is given by

. 1 ve
i + ;(Si]- —2G2-e;;") 1)

dxi; = B1" (A1 des;"" — x3;dv"™") and, dy;"P* = \/de;;PPde;;vP 3

where, de;;*? is the deviatoric viscoplastic strain increment tensor, A,* and B;* are material constant and dry;;"? is
the second invariant of the viscoplastic deviatoric strain increment tensor.
For the first yield function, the plastic potential function is assumed as follows :

fo =L — x5l — X502 + M*In(o,,/0,,,) =0 4)
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in which #* = |/nj;n};, 7 is the relative stress ratio. In the case of isotropic consolidation, 75 = 0. M* can be

determined by the current stress and o.,,.
The viscoplastic strain rate tensor é:.’;(l) is assumed to be given by

€5y =< Puijn(F1) > $2(8) (6)
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where, < ®y;;.(F1) >=< @;ijk,(F) > for the case of F1 > 0, and < ®y;3(F1) >= 0 for the case of F; <0.

In Eq.(6), < ®y;5101)(F1) > is the functional of Fy, it shows rate sensitivity and can be experimentally determined.
Fy = f,; in which F; = 0 denotes the static yield function.

In Perzyna’s theory(1963), < ®y;;.1(F1) > is dealt with as the scalar function. However, it is assumed that the first
material function is the fourth order isotropic tensor function.

‘blijkt(l)(Fl) = Cijkl*f’ll (F1) where,  Cijer = a8;;0k + b(0:051 + 8:1d;1) (7
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The concrete shape of the material function is determined referring the previous work(Adachi and Oka,1982, Oka,1982)
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where, m’o is the viscoplastic parameter. In order to take into account the rate independency at the failure state, the
second material function ®(£)(Adachi, Oka and Mimura 1987) was introduced. This function ®3(¢) is extended to
include the effect of cyclic loading and is given by

P2 =1+¢ 9)

where, £ is the internal variable.
Finally, we obtain a general description of the cyclic viscoelastic-viscoplastic constitutive model for overconsolidated
clay.
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3. A cyclic viscoelastic-viscoplastic analysis

Using the cyclic viscoelastic-viscoplastic model, we have simulated dynamic behavior of clay. As shown Fig.1, two
models appeared different viscoelastic damping characteristics respectively. The proposed model can describe well the
energy dissipation compared with a cyclic elastic-viscoplastic model.
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Fig.1 The relationship between a cyclic elastic-viscoplastic model and cyclic viscoelastic-viscoplastic model

Table 1. Material parameters used in the cyclic viscoelastic-viscoplastic analysis

Mean effective stress=0.95(Kgf/em?), Consolidation pressure=0.8(Kgf/fcm?), The coefficient of viscosity=2.8E-09
Rate of deviatoric stress=4.8E-04(Kgf/cm?), gmax=0.5(Kgflcm?), qmin=-0.5(Kgf/lcm?), Time=80,000sec
Viscoplastic parameters (my=12.8, C,=9.0E-09, C,=1.5E-08) Mfc=1.45 Mfe=1.45, Mmc=1.2, Mme=1.2,
Elastic Young’s modulus=240(Kgf/cm?), Second elastic Young's modulue=80(Kgflcm?), I[nitial void ratio=1.922
Hardening parameters (B,=57, Bs=15, Bt=1, H=500, G,=408) Swelling index=0.0477, Consolidation index=0.355

4. Conclusion

In this study, a cyclic viscoelastic-viscoplastic constitutive model for clay has been derived based on the non-linear
kinematic hardening theory and an overstress type of viscoplasticity as well as the three parameter model with Voigt
element and elastic spring called the linear spring Voigt model. The proposed model is effective to obtain the full
formulation of the time-dependent behavior of clay.
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