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1. INTRODUCTION A number of research works have been made for the shear deformable laminat-
ed composite rectangular plates in recent years[l,2]. Most of analysis, however, are confirm-
ed within the scope of the rectangular plates simply supported on four edges. This paper des-
cribes a development of the displacement functions for the symmetrically laminated rectangul-
ar plates based on the first order shear deformation theory. Using the displacement functions
obtained, one can solve exactly the rectangular plates with two opposite edges simply sup-
ported and the other edges subjected to a wide variety of boundary conditions in the form of
Levy-type single series solutions.

2. GOVERNING EQUATIONS Consider a symmetrically laminated rectangular plate of Bi;=0 and
A1¢=Ar6=A45=Dy2=Dy6=0. The governing equations are expressed in terms of the three displace~

ment componentsin the matrix form [1]:

Lii Lie Lys Px ax
Loy Lo2 Les | » § ¥y = -{my (1)
L3y Liz Las w q

Here, ¥x, ¥y and w, respectively, are the angular rotations and deflection of the plate;
mx, my and q are the surface load terms; and Li; are the commutative, linear differential

operators which are given as

LH=D“6xx+Dseayy-KA55. L12=(D12+Dss)6x6y. L13=—KA55(9X'
L21=Liz.  L22=Des @ xXtD22 0 yy-KAss. Los=—KAsa0Yy, 2)
Lyy=-Lis, Lis=-Loa, Lss=kAss FxxtKkA;, T yy

where D;; and A;; are the plate bending and shear rigidities., respectively: k is the shear
correction factor; and 9x=8 ()/dx,dxx=82()/9x2, etc.

3. DISPLACEMENT FUNCTIONS Equation (1) is a system of linear partial differential equations
with constant coefficients. Thus Heki and Habara' s procedure [3] can be used to obtain a dis-
placement function.

3.1 Particular solution If three functions ¢, are the particular solutions of the differen-

tial equations:

det(Li;) + ¢ =-mx, det(Li;) - ¢o=-my. det(L;;) - ¢:=-q (3)
the particular solutions ¥xP, P y® and w? are given by three displacement functions ¢ ; as
YxP=My; @1 tMes @t Mz P, WYMo 0 tMao 0o tMs 05, WMy 0 Moz Gt 0 {4)

In the above, M;; are the cofactors of matrix (L;) and the explicit form of det(L;;) is

a° as a°® ae a* a* a*
Aot e G % oy Gy 5y e T oy oy

(5)

where the coefficients ¢, are given as follows:

c1=KAssDi1Des, Co=kAss (D11D22-2B12D56-Di22)}+ K AsaDiiDss,
C3= KA (D11D:2-2D1 2Ds6-D122) t kAssDapDee.  Ca=KAssD22Dss, (6)
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Cs=~ K%AsqhssDi, CS:'2K2A44A55 (D12+2Des) . €15~ K%AsqhssDze
For a special case of mx=my=0 and g=q{x),

01220, ¢3(x)=‘°nz‘:=’1(qm/<1>m)sin(a.x) (1)

where a,=mm/a. ®,=-(c; an2-Cs) a,* and q, is the Fourier coefficient of the load q(x).

3.2 Homogeneous solution If a function ¢ is the solution of the homogeneous part of Eq. (3).

det(Li;) + ¢=0 (8)
three independent, homogeneous solutions (¥x", Yy",w"), (i=1,2,3) are expressed as
(@x", py".w")i=e; (M M2 Mi3) @ C)]

where ¢, are arbitrary constants. We then may choose i=3 and ¢3;=1, so that ¥x", ¥y" and
w" become

PxP=3x {KAssDos XX + [ KAssDoo-khAss (D12Dss) ] Gyy ~K2Asahss} @
Wyr=8y { KAsDes Oyy + [ kKAsaDi1-kAss (Di2tDss) 1 xx -Kk%hAi4Ass} @ (10)
w"= [D;Dss @ xxxx + (DyDz2-2Dy2Des-D122) & xxyy +D22Dec & yyyy-
- (kAgaDi tKAssDes) Gxx - (kAssDostkAssDze) T¥y ~K2Asahss] @

The simple support conditions of w=1y=Mx=0 at two opposite sides of x=0, a may be satisf
ied by the following Levy-type series for ¢:

©
¢=m2:1 Yo (y)sin(a.x) (11)
Substituting ¢ into Eq. (8) leads to the sixth-order differential equation for Y, (y):
Yol T4+, Y, PV 4E, Y, P45 Y,=0 (12)
where T;=-(c; an2-c7)/cs, T2={(co @n?-ce) @n?/cs, f3=~{cy @un?-cs) an/cs.
Letting Y, (y) =exp (sy), the charactetristic equation of Egq. (12} is obtained as
s84f s +f,52+£,=0 (13)
or, writting t=s2,
t3+f, t2+f, t+f5=0 (14)

This algebraic cubic equation generally has three real roots or one real and two complex con-
jugates roots. These roots can be easily determined using the method of Cardane. Therefore,
the solution form of Y, will be completly estabulished for each case of the roots. In the
case of all of positive real and unequal roots t;, for example, Y. takes the following form:

Y, (y)=A, cosh {u, y) +A> sinh (u, y) +A;cosh (u, y) +Assinh (u,y) +As cosh (u3y) +As sinh (uzy) (15)
where u;=(t,)'”? and A; are arbitrary constants.

4. CONCLUSION The displacement functions for the symmetrically laminated compesite rectan-
gular plates including the effect of shear deformation. The present method could also be ex-
tended to find the displacement functions of general anisotropic laminated composite plates
for the bending, stability and vibration problems.
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