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1. Introduction In shakedown analyses, the method of nonlinear programming
is general ly used. However, in the case of two-span beam under a single re-
peated moving load, it may be much easier treated as a problem of quadratic
programing, for there are only two variables in the mathematical programming.

2. Shakedown Analysis Figure 1 shows the beam mo- 3
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location of view point. Denoting the elastic bending —l LS A,
manents and shearing forces under the repeated moving 2 1 | ) l

load byMi(E) , Si(E), an applied elastic stress damain

in mi-siplane is obtained as follows: Fig. 1 Two-span beam
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surrounded by slashes in Fig. 2 for the sake of 8
demonstration. Here, a circumscribed polyhedron &, (mij’eij)
about R, is defined so as to be convex and has "
same  vertexes (rn%7 7«.7) , as marked by dots. ' / v

Next, a residual reactive force X being \\\ R.
assumed at the intermediate support, the resi- Rt 3 *

dual bending moment and shearing force at each
view point are given asM.,5. which are nondime-
nsionlized into m, M /M_, S,b S5./5 . Further, introducing a load multiplier
A=PL/M_ and a nondimensional variable, U-XZ/M , Melan's theorem for determining
the shakedown load factor A yields the fol lowmg mathematical programming:

Fig. 2 Vertexes and convex region
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The inequality constraints in problem (2) may be expressed as a quadratic
inequality about M as

(m +s 2yp2+2(m. jm1,+3 5. ))\u+(m2 +32 JA%-150

iz (3)
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While inequality (3) gives a constraint for as
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Consequently, shakedown load factor )‘s satisfying inequalities (4) and (5)
can be solved by applying fol lowing expression
M, = maximize y; . = minimize y;f.
1,4 i,d J (6)
in an iterative procedure within the region

9 = inimi =2 2 . ._ ~S. J-ﬁ .
Q:’)\silo s >‘o minimize {./mi+§¢ / Imtjst zJ ’Ll } (7)

15d

The graphical ly demonstrative procedure is shown u
in Fig. 3, where Ae and )‘s means elastic limit
load factor and shakedown load factor, respecti- min. Ylfj
vely, while U represents the residual reactive \ A A
force factor at intermediate support when the e ,8 9 A
beam shakes down. | e |

max. y,,
3. Results  Shakedwon load factor via M,/ (5,7) Yij

is demonstrated drawn in Fig. 4. Four parallel
lines mean the ultimate load factor determined by
the method of limit analysis, shakedown load factor, elastic limit load factor,
residual reactive force factor for consideration of bending alone. Their values
are also shown in the figure. It may be seen that shakedown load factor fluc-
tuates significantly with the value ofM /(Spl)lying between 0.1 and 1.1, and
that discrepency between) andA_ becomes very little if the value of M /(S 1)
greater than about 0.25 while it keeps steady if the value less than about 0.3.

Fig. 3  iterative procedure
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Fig. 4 Vvariation of )‘s’ke’us with respect to Mp/(Sp- 1)
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