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1. INTRODUCTION

There is great need for fast and accurate methods for the numerical solution of the equations of unsteady flow.
Methods for numerical solution may be classified as: (1) Direct method; and (2) Characteristic method. In
Characteristic method the equations are first transformed into the characetristic form before finite difference
representations. The finite difference scheme may be classified further into explicit and implicit scheme. In
explicit scheme, unknowns can be evaluated a few at a time. In implicit scheme, the finite difference equations
are generally non-linear algebraic equations in which the unknowns occure implicitly.

This paper presents a comparision of CPU time and results from three of the more important numerical methods,
namely four point implicit method, characteristic method based on explicit scheme and diffusion model, for
unsteady flow in Seta river. The implicit scheme used for diffusion model is found to have the advantages of
economy in computer time and accuracy and stability under a wide range of time increment.

2. NUMERICAL METHODS
Saint-Venant equations for gradually varying flow in open channels are
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¥here A is the flow area, Q the discharge, S, the friction slope, t the time, h the water surface elevation above
a reference horizontal datum, q the lateral inflow, g the acceleration gravity.

2.1 FOUR POINT IMPLICIT METHOD
By using the four point implicit method, the above equations are expressed as follows:
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Where 0 is the weighting parameter on which the stability of solution depends. Kanda and Kitadd have reported
that the solutions are most favorable for 6=0.55-0.60

Two additional equations for determining all the unknowns are supplied by the boundary conditions. The Newton
iteration method is used for the solution of this system.

2.2 CHARACTERISTIC METHOD
Expressing eq. (2) in the following form :
1/g8vw/dt+v/gdu/dx+dh/8x2+8=0 (D)

Introducing the total energy head, H:h+v2/29, eq. (5) is transformed into
1/g8v/0t+0H/3x=-S; ()]

Egs. (1)and (8) can be transformed in characteristic form as:
N
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Where c=&/gA/B and B: the surface vidth. ] o
Under the assumption of ¥ -c2<0 and refering Fig.1, the egs. (7) and(8) are expre.ssednm explicit form (ref.3)

as;
Along dx/dt=v+c
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At new time steps, the solutions at all the interior points can be obtained f_‘rom simaltaneous egs. (9) and(10);
for the downstream point use eq.(9), and for the upstream point use eq. (10) with boundary conditions.

2.3 DIFFUSION METHOD )
In this model, the first two inertial terms in eq.(2) are neglected. So eq. (2) becomes

Sy=~0h/dx 1)
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Accordingly, Manning's equation becomes
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Expressing eq. (1) and eq. (12) in implicit finite difference form
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Combining eq. (14) with eq. (13) and using the boundary conditions, the obtained system of non-linear equations
are solved by Newton iteration method.

3. COMPARISION

For a comparision of three methods, a unsteady flow in Seta river were simulated. The river is irregular in
cross-section and is operated by a gate at the downstream end. A constant discharge was also taken for a power
plant near to the downstream. The Manning's roughness factor was used 0.025. A constant time increment,at and
variable space Increment,sx were used in the numerical computations. The upstream and downstream boundary condi-
tion was a specified stage hydrograph shown in Fig.2 and Fig.3. The computations were performed on a FACOM M382
computer system at the Kyoto university.

Fig.2 and Fig.3 also shows the calculated discharge hydrographs by using the three methods. Accuracy and applic-
ability of the method is illustrated in Fig.4 by plotting the stage and discharge hydrograph at Hashimoto (a
point 2420m. downstream from upperend,Toriigawa). The execution time required for the computation are given in
Table 1. The diffusion method is found to be efficient among the three, since it converges faster and it requires
only one half of the number of algebraic equations required by the dynamic model.

4, CONCLUSION
The used non-linear diffusion model is found to be nealy accurate and efficient in computer time for simulating

unsteady flow in open channels when reversal flow is significant.
Now the authors are testing the same diffusion model for different flow and channel conditions. The same diffu-
sion model will alsc be applied to open chamnel networks for comparing the accuracy and computation time with

other models.
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