中性子線透過イメージングを用いたシリカフューム混入コンクリートの 水分浸透性に関する研究

金沢大学 学生会員 ○吉田 千晶 正会員 久保 善司 小黒 拓郎 理化学研究所 正会員 吉村 雄一 水田 真紀

1. はじめに

コンクリート構造物の劣化原因として, 塩害, 中性化, 凍害,およびアルカリシリカ反応等が挙げられる,劣化 が発生・進行するには,各劣化における有害物質の侵入 が必須となる.また、これらの有害物質は水分とともに コンクリート中へ浸透することが多い. そのため、水分 移動特性は劣化の進行を支配する要因の一つとされる. 水分移動特性あるいは水分状態を把握する手法はある ものの、リアルタイムかつ非破壊で把握する方法は確 立されていない. コンクリート中の水分浸透性を非破 壊かつ定量的に把握する手法として中性子透過イメー ジング法があり、著者らはコンクリートの W/C や空隙 構造が水分浸透性に与える影響を検討した結果を報告 している ^{1),2),3)}本研究では、コンクリートの高強度化に 用いられる混和材としてシリカフューム (SF) に着目し、 マイクロフィラー効果およびポゾラン反応の両者によ る細孔構造の緻密化が水分浸透性に与える影響を中性 子透過イメージング法により検討した.

2. 実験概要

2.1 供試体概要

(1)配合 高強度コンクリートを想定し,W/C35%お よび 40%を用意した.SF はセメント質量に対して外 割置換(10%)とした.コンクリートの配合を表-1に 示す.コンクリート打設・脱型後,3ヶ月間水中養生 を行なった.W/C=35%のものについては,いずれの要 因についても空気量の異なる供試体を用意した.

2.2 水分浸透特性の評価

(1)水分浸透試験 養生終了後,供試体を 35 mm厚さに 切断し,検討用試験体 (7.5*7.5*3.5cm)とした.試験体 は同一要因 2 体を用意し,温度 40℃で約 3 週間乾燥さ せ,水分浸透試験に用いた.水分浸透試験は打設底面を 5 mm程度水中浸漬させて行った.浸透試験開始後の質量 変化(吸水量)を電子秤(精度 0.1g)で測定した.

(2)中性子透過イメージングによる水分浸透の定量化

中性子透過イメージングは理化学研究所の小型中性 子源 RANS を用いて実験を行った.中性子透過イメー ジングは、コンクリート中の水分量によって中性子線 の透過率が変化することを利用し、その水分状態を画 像として取得し、定量化する手法である.水分浸透試験 開始時、16、44、64 および 164 時間後の画像を取得し た.中性子透過イメージは既往の研究 3)を参考に画像 解析ソフトウェア ImageJ を使用してノイズ除去、等の 画像処理を行い、乾燥時と浸漬後の透過イメージの除 算により、浸透水分を可視化したイメージを出力した. 吸水時間の経過に伴う、供試体の高さ方向の吸水量分 布を把握した.なお、解像度は 1.8 mmとした.

3. 結果および考察

3.1 水分浸透試験

水分浸透試験結果を図-1 に示す. いずれの供試体も時間とともに吸水量が増加し,その吸水速度は徐々に減少した. W/C=35%のものでは,SFを混和したものの吸水量は無混和の 1/2 程度まで低減した.SF 添加のW/C=40%(W/B=36%)の吸水量は,SF 無混和のW/C=35%の約2/3程度まで低減された.SFの混和によって高い水分浸透抑制効果が得られることが確認され

供試体名	W/B	SF/C	s/a	単位量(kg/m ³)						空気量
	(%)	(%)	(%)	W(%)	C(kg)	S(kg)	G(kg)	SF(%)	SP(kg)	(%)
35-0L	35	0	46	160	457	769	901	0	5.49	3.5
35-0H	35	0	46	160	457	769	901	0	5.49	5.1
35-10L	32	10	44	160	457	717	901	46	5.49	3.3
35-10H	32	10	44	160	457	717	901	46	5.49	5.9
40-10	36	10	46	160	400	769	901	40	4.80	4.6

セメント:普通ポルトランドセメント,密度 3.16g/cm³ SF:市販,密度 2.23g/cm³

細骨材:手取川産川砂,密度:2.59g/cm³ 粗骨材:手取川産川砂利,密度:2.59g/cm³, Gmax:20 ㎜

図-1 吸水量と時間の関係

た.また,同一配合において,空気量の大きいものの吸水量は若干大きい傾向を示した.W/Bが同じ場合でも, 空気量が水分浸透性に影響すると考えられ,既往研究³⁾ と同様の傾向が認められる.

3.2 水分浸透性

透過画像から高さ方向の吸水量分布を算出し,それ をもとにコンクリートの水分流束を算出した.流束

(g/day)は 24 時間当たりにある高さの浸透面 (7.5cm*3.5cm)を通過した水の質量と定義した.浸透 開始 16 時間における流束分布を図-2 に,浸透開始 164 時間における流束分布を図-3 に示す.

浸透開始16時間後においては、いずれも、供試体高 さが高くなると急激に流束が小さくなった.流束が概 ね0となる高さ(図-2中矢印)、すなわち、透水がほぼ 生じていない高さは、W/Bにかかわらず、SFを混和し たものの方が低かった.SFの混和によって組織が緻密 化され、吸水作用が大幅に低減されたものと考えられ る.W/C=40%のSF 混和のものでは、W/C=35%の無混 和のものよりも吸水作用が低減されていることが確認 された.他方、空気量の影響は顕著でなく、コンクリー トの配合(細孔構造)が同じ場合には、空気量は流束に 大きな影響を与えなかったものと考えられる.

浸透開始 164 時間後においては、底面(高さ 0mm) からある高さまで流速が概ね一定の範囲が認められ (図中青囲み部分), SF 混和のものでは 10~20mm 高 さ,無混和のものでは 30mm 前後の高さであった.いず れもその高さ以降は流速が低下した.その範囲におい ては、吸水させる駆動力(毛細管力)と吸水速度が平衡 に達しているものと考えられ、この流速が一定となる 高さが小さいほど、水分浸透性は小さいものと考えら れる.W/Bにかかわらず、SF を混和したものは、流速 および一定となる高さも小さく、SF の混和による効果

図-3 浸透開始 164 時間後における流束分布

が確認された.なお,空気量の影響については前述と同様に顕著な影響はなかった.

4.まとめ

高強度コンクリートを想定したSF混入した緻密なコ ンクリートにおいても、中性子透過イメージング法に より水分浸透性の相違を把握することが可能であった. SF 混和による水分浸透抑制の効果は大きいことが確認 された.W/C=40%のSF 混和のものがW/C=35%のSF 無 混和のものよりも水分浸透抑制に優れた結果が得られ たのはその証左と考えられる.

参考文献

- 吉村雄一ら:小型中性子源を利用したコンクリートの水 測定方法の検討,コンクリート工学年次論文集, Vol. 39, No. 1, pp. 613-618, 2017
- 吉村雄一ら:小型加速器中性子源を利用したコンクリートにおける水の浸透性状評価,コンクリート構造物の補修,補強,アップグレード論文報告集,pp.653-658,2017
- 3) 盛谷洋輝ら:中性子線透過イメージングを用いたコンク リートの水分浸透特性に関する基礎的研究、コンクリー ト工学年次論文集,Vol.41, No.1,2019