供用中の伸縮装置の通過音による異常検知の試み

岐阜大学 学生会員 〇加藤 瑳那子 正会員 木下 幸治 中日本ハイウェイ・エンジニアリング名古屋株式会社 正会員 多賀 翔一 正会員 小塚 正博 TTES 梅川 雄太郎 菅沼 久忠

1. はじめに

橋梁に設置される伸縮装置は維持管理上,各種点 検により異常の有無が調査されているが,交通規制 を必要とするような箇所では5年に1度の定期点検 以外に点検を行う機会がないのが現状である.伸縮 装置の劣化・損傷速度は場合によっては非常に速い ため,最近発生した伸縮装置のフェースプレート破 断による走行車両の損傷事例のように,定期点検の 間に損傷が起こる場合がある.こうした現状から, 定期点検の間に発生する変状の兆候あるいはその初 期段階で発見する手段の開発が求められている.

一方で, 定期点検に対し日常点検では, 車上から の目視、振動、通過音などの情報をもとに点検者が 総合的に判断して異常を検知し、その後近接目視や 打音点検を行い損傷の判断をする. この過程の中で 点検者の判断材料の一つである通過音には,既往研 究1)で明らかとされた損傷メカニズムの観点からも 変化が表れる可能性があると考えられる. そこで著 者らは、 点検者が異常検知の判断の一つとしている 伸縮装置通過音に着目した異常検知を試み、既往研 究²⁾では,通過音に表れる変化を検知できる可能性 のある計測条件および手法を提示し、 高速道路で供 用中の伸縮装置通過音において,低周波数帯にパワ ースペクトルの変化が表れることを確認した.本研 究では、伸縮装置通過時の短時間フーリエ変換(以 降, STFT) 画像に表れるパワースペクトルの変化と 損傷状況から、機械学習を用いた通過音による損傷 判断を試みた.

2. 供用中の伸縮装置の通過音の計測

2.1 計測概要

著者らは、通過音に表れる変化を検知できる可能 性のある計測条件及び解析方法の検討により、道路 点検車と同程度の大きさの車両を用いた、車内で計 測した通過音の STFT において低周波数帯にパワー スペクトルの変化が表れることを確認した²⁾. この ことから、本研究でも高速道路で供用中の伸縮装置 を対象に、道路点検車と同程度の大きさの車両を用 いた、車内での通過音の計測を実施した.図-1に計 測に用いた通過車両、図-2に計測位置を示す.計測 には RION 普通騒音計 NL-06 を用い、サンプリング 周波数 25,600Hz で計測を行った.対象とした伸縮装

図-1 通過車両(普通自動車)

(a) 車内中央(b) 車内前輪側図−2 計測位置

表-1 点検結果の内訳

損傷状況	基数
異常なし	29
エンドプレートの腐食	7
フェースプレート壁高欄側路肩部の腐食・錆	31
フェースプレート壁高欄側路肩部の著しい腐食・錆	9
フェースプレート中央帯側路肩部の腐食・錆	5
伸縮装置裏のアングル材の腐食	2
打音点検による空洞音	2

置は高速道路で供用中の80基であり,橋梁ごとに異 なる種類が設置されている.計測は走行速度を統一 して3回実施し,供用中の伸縮装置の損傷程度は点 検記録をもとに判断した.表-1に点検結果の内訳を 示す.点検記録に示す損傷として,フェースプレー トの腐食や詳細点検にて実施された打音点検による 空洞音が挙げられる.

2.2 計測音の STFT 結果

図-3 に車内計測音の STFT 結果の一例を示す. STFT は窓関数にハニング窓を用い,フレーム長 10,240 点,フレームシフト量 1,024 点で実施した. この結果から,供用中の伸縮装置通過時の普通自動 車車内計測音において,20Hz~40Hz の低周波のパ ワースペクトルが高くなることが確認できた.この 結果は,同じ条件で3回実施した計測音の解析結果 でもおおよそ一致したパワースペクトルが表れてい ることが確認できた.

3. 機械学習による損傷の判別

通過音の STFT 結果において, 20Hz~40Hz の低周 波にパワースペクトルの変化が表れたことから、こ れらの解析画像と点検結果をもとに,機械学習によ る損傷の有無の分類を試みることとした.本研究で は、機械学習の中でも畳み込み層やプーリング層と いった複数の中間層をもつ畳み込みニューラルネッ トワーク(以下, CNN)を用いた. 図-4 に CNN の 構造を示す. 画像の学習では, 損傷の有無といった ラベル付きのデータが入力されると、中間層により 画像の特徴を抽出したのち、出力された結果と正解 データの比較を行い, その誤差が限りなく小さくな るように,層をつなぐパラメータが更新されていく. また、中間層の構造については、画像分類に用いら れる特徴を取り出せるように既に学習が行われてい る, 事前学習済みネットワークの一つである Alexnet を用いた.学習には、計測音の解析画像 240 枚のう ち, 表-1の損傷内訳に示す, 異常なしを「損傷無」, 損傷が確認されたものを「損傷有」として、8 割を 学習用,1割を検証用,1割をテスト用とし、学習回 数 30 回, 学習率 0.0001 で学習を実施した. 図-5 に学習の精度と損失を示す.精度と損失はそれぞれ 100%と0に収束するのが望ましいが、この結果では 損失はおおむね収束しているものの、検証精度が収 束しておらず一定であることから、学習が十分でな いことが確認できる.また、この学習結果を用いた テスト用画像24枚の損傷判断の正答数は、「損傷無」 が 4/10 枚,「損傷有」が 12/14 枚だったことから, 学習が十分に行われていないことにより、損傷判断 結果を損傷有の方へ寄せてしまう可能性があると考 えられる.以上の損傷判断では、点検結果をもとに 画像を「損傷無」「損傷有」とラベル付けし学習を行 ったが、点検の損傷項目の中でもパワースペクトル の変化として表れる損傷か否か事前に教師データを 分類する必要であると考えられる. さらには, 図-3 に示す同一の種類で点検結果では異常なしとされた 2 つの伸縮装置の通過音の STFT 結果は、(a)では 20~27Hz と 30~40Hz のパワースペクトルが大きく表 れているのに対し、 (b)では 30~40Hz のパワースペ クトルは表れていないものの、20~27Hzのパワース ペクトルが表れている.このように、実際の伸縮装 置の計測音の STFT 結果は、計測条件、伸縮装置の 種類が同じであってもパワースペクトルの変化が一 致するとは限らない.このため、できる限り多くの 種類の教師データを集めて,異常として検知可能な パワースペクトルの変化を明らかとする必要がある. 以上より, 今後の検討として, まずは異常なしのパ ワースペクトルの傾向を機械学習により捉えるため の検討を行う. その上で, 各損傷項目のうち, 異常

図-3 供用中の伸縮装置通過音のSTFT 結果の一例

図-4 CNN の構造と学習の仕組み

図-5 学習精度と損失

なしのパワースペクトルと比較して、パワースペクトルに表れるような判別可能な損傷であるかの検討 を行う予定である.

参考文献

1) 酒井修平,小野秀一,舘石和雄:道路橋の鋼製フィンガ ージョイントの損傷メカニズム,鋼構造論文集,第21巻第 84号, pp.9-21, 2014.12.

2) 木下幸治,加藤瑳那子,多賀翔一,梅川雄太郎,小塚正 博:通過音による鋼製フィンガージョイントの異常検知に関 する検討,鋼構造年次論文報告集,第 27 巻, pp.701-706, 2019.11.