空隙構造の異なるコンクリートの水分浸透に関する中性子線透過イメージング

金沢大学 学生会員 〇盛谷 洋輝 金沢大学 正会員 久保 善司 理化学研究所 非会員 吉村 雄一 理化学研究所 正会員 水田 真紀 理化学研究所 非会員 大竹 淑恵

1.はじめに

コンクリート構造物の劣化の発生・進行は、それら の劣化要因となる 各種物質の移動に支配される. その物質移動は、炭酸ガスや水蒸気などの気体の移 動、水に代表される液体の移動、さらに水に溶解した イオンの拡散・移流による移動などに整理できる.

コンクリート 構造物の劣化の1つに, 鋼材の腐食 が挙げられる.鋼材腐食が進行するためには,水と酸 素が必要であり,実構造物の維持管理において水の 供給に着目することが重要であると指摘もされてい る¹⁾.すなわち,劣化の発生および進行を把握・制 御を行うためには,水分供給条件とともに,物質移動 を評価しえるコンクリート中への水分浸透を把握す ることはきわめて重要な課題として位置付けられる.

その物質移動において,各種物質の媒体となる水 分浸透を把握する手法には,これまで多くの検討が なされてきた.水の移動をリアルタイムでかつ,直接 的に評価する手法の1つとして,中性子と原子核の 相互作用により,生じる減衰特性の差を利用して,被 写体の透過画像を得る中性子線透過イメージングに よる方法がある²⁾.本研究では,定量的な水分移動 の把握が可能とされる中性子透過イメージング法に より,空隙構造の異なるコンクリート中の水分浸透 特性を把握し,空隙構造が水分浸透特性に与える影 響を検討した.

2. 実験概要

2.1 供試体概要

コンクリート角柱供試体(75×75×400mm)は,打 設1日後に脱型し,その後約2か月水中養生を行っ た.養生後,角柱供試体の中央部から厚さ50mmの 供試体(75×75×50mm)を2個ずつ切り出し,測定に 用いた.また,離型剤による浸透特性への影響を避け るため,型枠面をディスクサンダーで研磨した.

既往の検討においては、W/Cの異なるセメントペー スト、モルタルあるいはコンクリート などを対象と

表-1 供試体要因および配合

要因名	W/C(%)	s/a(%)	単位量(kg/m ³)						A:=(%)
			W	С	s	G	AE減	AE助	AIT(/0)
W190-1,2	55	49	190	345	819	856	0.35	0.035	6.0
W175-1,2		47.2	175	318	763	974	1.1	0.016	5.2
W155-L-1,2		47.2	155	282	856	962	2.8	0.011	4.6
W155-H-1,2		47.2	155	282	856	962	2.3	0.017	5.6

図-1 水分浸透試験概要図

した研究が多く検討されており,それらに関する多 くの知見が蓄積されている.本研究では,同一水セメ ント比のコンクリート を対象に,異なる空隙が水分 移動特性に与える影響を検討するため,W/C=55%とし, 単位水量および空気量の異なるコンクリート 供試 体を作製した.作製した供試体とその配合および空 気量を表-1に示す.なお,供試体名の最後の数字は同 一配合・同一空気量の角柱供試体(75×75×400mm) から切り出したいずれかを番号1,2で示した.

2.2 水分浸透試験

供試体は,切断後温度 40℃で約1ヶ月間乾燥させ, 水分浸透試験に用いた.水分浸透試験は打設底面が Smm 程度浸漬するようにして行った.水分浸透試験 の概要を図-1に示す.水分浸透試験では,吸水量(質 量)の測定および中性子線透過イメージングを行い, 吸水時間の経過に伴う,供試体の高さ方向の吸水量 分布を把握した.中性子線透過イメージングは,理化 学研究所小型中性子源 RANS²⁾を用いた.中性子線透 過イメージング実験セットアップを図-2に示す.

図-2 実験セットアップ

3. 実験結果及び考察

3.1 吸水量

各供試体の単位体積当たりの吸水量(以下,吸水 量)の経時変化を図-3 に示す.単位水量が大きくな るほど,吸水量は大きくなる傾向が認められた.W/C は同一であり,主な水分移動は,コンクリート中の モルタル部分あるいはペースト部分で生じるとする と,単位水量が大きいものほど単位体積に占めるモ ルタル部分は大きく,水分移動可能な体積が大きい ものほど,吸水量が大きくなったものと考えられる. 3.2 中性子線透過イメージング

9.2 中ビナ線透過イメージングにより得られた透過画

像と測定した吸水量の関係を評価し、供試体の吸水 量分布を算出した. W190-1 の吸水量分布を図-4 に示 す。吸水面付近から徐々に浸透が生じ,時間の経過に 伴い,浸透高さが増加した. 異なる空隙構造間の浸透 速さを比較するため,高さ方向の吸水量が急激に減 少する高さ(図中の赤丸)を,水分浸透高さ³⁾と定 義とし,比較検討することとした.

水分浸透高さの経時変化を図-5 に示す.浸透高さ は、単位水量の最も小さい155kg/m³が低く、単位水 量 175kg/m³のものが高い傾向を示した.吸水量は、 モルタル体積率に支配されていたが、浸透高さは、単 位水量 190kg/m³と 175kg/m³では、モルタル体積率の 小さい175kg/m³の方が高い結果が得られた.この原 因としては、190kg/m³の方が単位体積当たりのモル タル体積が大きく、空隙量も大きいため、高さ方向の 水分移動と同時に水平方向の移動も他のものより大 きくなり、結果的に175kg/m³のもの浸透高さが大き くなった可能性が推察される.しかし、浸透高さも便 宜的に設定した定義であり、また、単位水量が空隙構 造に与える影響も含めて、今後のさらなる検討を行 い、その詳細を明らかにする必要があろう.

図-5 水分浸透高さ

参考文献

- 上田洋,飯島亨,鈴木浩明:コンクリート構造物への水分 浸透の影響を調べる,RRR, Vol.71,No.6,pp.20-23,2014
- 2) 兼松学:中性子によるコンクリート中の水分の可視化,コ ンクリート工学, Vol.53, No.5, pp.447-451, 2015
- 3) 吉村雄一,水田真紀,須長秀行,大竹淑恵,林崎規託:中性子 イメージングを適用した水セメント比の異なるコンクリー トの水分浸透抵抗性評価,コンクリート構造物の補修,補 強,アップグレード論文報告集 pp.641-646,2018