不飽和スラリー粘土の乾燥収縮特性(その2)

信州大学大学院	学生会員(⊃瀬谷	曜			
信州大学工学部	正会員	梅崎	健夫,	正会員	河村	隆
鴻池組	非会員	本間	清真			
(株)アールエフ	非会員	小平言	計美			

1. **はじめに** X線 CT スキャナおよび画像解析を用いて試料作製方法が異なるスラリー粘土の乾燥過程における質量および体積変化について検討した.また, 発生したクラックの定性的な評価も行った.

2. 試験概要 試料には、NSF(C)粘土(土粒子密度 ρ_s =2.723g/cm³,液性限界 w_L =57.5%,塑性限界 w_P =35.7%,収縮限界 w_s =37.6%)を用いた.すべてのケース において試料は D=10cm のビーカーに空気乾燥された粘土試料 70g と純水 140g を 用いた.本試験では"減圧""撹拌""沈降""浸透"の4 つの方法で供試体を作製 した.減圧は純水が入ったビーカーに粘土粉末を加えて撹拌した後,さらに真空 脱泡機を用いて真空圧(p_v =-97kPa)で 30 分の撹拌脱泡を行うことで作製した. 撹拌は減圧と同様に試料を撹拌したが、真空撹拌脱泡を行わなかった.沈降は純 水が入ったビーカーに粘土粉末を少量ずつ表面が平らになるように加えて作製した. 浸透は粘土を先にビーカーに入れ、下に向かう水みちができないように霧吹 きを用いて純水を加えて作製した.

図-1に試験装置を示す.粘土を純水になじませるために供試体を室 温 24°C,湿度 70%程度で3日間養生した.実験を開始する前に粘土表 面に溜まっている上水を除去し,室温 24°C,湿度 30%程度で乾燥を開 始した.ビニールハウス内の除湿器は乾燥を促進させるために設置し た.表-1に試験開始時の含水比と高さを示す.乾燥過程の含水比を測

定するために,供試体の質量を約12時間おきにビニールハ ウスから取り出し,0.01gの精度の電子天秤で測定した.ま た,体積の算定を行うため,X線CTスキャナ((株)アー ルエフ,コンピュータ断層撮影装置NAOMi-CT)を用いて 撮影を行った. NAOMi-CTビューワソフト((株)アール エフ)および画像解析ソフト(Mover-tr/2D,(株)ライブラリ ー)を用いて供試体の体積を算定した.また,CT解析で供 試体内にある間隙の大きさも測定した.

3. 試験結果および考察 図-2(a)に供試体の質量,図-2(b)に供試体の含水比,図-2(c)に供試体の体積の経時変化 を示す.いずれにおいても乾燥開始とともにほぼ直線的に 減少し,急激に折れ曲がる2直線で表される.ケースによ って初期含水比が異なるのは試験開始前に除去した上水の 量が異なるためである.撹拌することによって粘土と純水 がよく混ざり,初期含水比が大きくなる.乾燥状態におけ る供試体の体積は減圧以外の体積が大きくなった.供試体 内の初期状態から含まれる空気は最後まで存在するものが

図-1 試験装置

表-1 試験ケース

試料作製	乾燥開始時の含水比	初期高さ
方法	(養生後) w ₀	h_0
減圧	194.7%	1.90cm
撹拌	177.2%	1.87cm
沈降	143.8%	1.63cm
浸透	132.1%	1.49cm

-265-

表-2 初期(上)および終了時(下)における供試体の写真

あることがわかる.

表-2に初期および絶乾状態における供試体の写真を示す. 減圧における初期の表面はほかのケースに比べて滑らかで あり,絶乾状態になっても供試体が分断されるようなクラッ クは発生しなかった.これは既報 1)の結果と同様である.撹 拌供試体における初期表面は減圧とほぼ同様である.しか し,乾燥後は減圧とは異なり,壁面に沿って大きなクラック が生じた.これは試料内部の不均質性ではなくビーカーの壁 と粘土の間の付着力によるものだと考えられる.沈降の初期 の供試体表面は撹拌されたものに比べて凸凹している.供試

図-3 含水比と独立間隙の体積

体の表面が凸凹するのは粘土粒子を沈降させた際に含まれる巻き込み空気が養生期間中に表面から抜け出た ためである. 撹拌試料にも空気が含まれているが, 撹拌されたことによって表面に抜け出るだけの大きな気 泡は分解されたと考えられる. 沈降は最終的に中央部で交差するクラックが発生した. 撹拌で見られた壁面 の影響ではなく, 既報 1)と同様に試料内にある間隙によるものと考えられる. 浸透の初期状態における供試 体の表面は最も荒く, 発生したクラックも今回のケースの中でもっとも複雑で細かい. 試料内部に含まれて いた空気が抜け出ることで乾燥後のクラックの大きさや複雑さが決定される.

CT スキャナで解析可能な供試体内部にある間隙を独立間隙と定義し、それぞれの含水比と独立間隙の関係を図-3 に示す.減圧の含水比が約 50%のときに独立間隙が急激に増加しているが、これは供試体と壁面の間に生じた空間を間隙と認識してしまったゆえの測定誤差である.クラックが発生していない状態では含水比の低下とともに独立間隙の体積は減少しており、既報 1)と異なる挙動を示した.今回のケースでは既報 1)に比べて初期含水比が高い.粘土の初期状態におけるコンシステンシーが独立間隙の含みやすさに影響があると考えられる. クラックの大きさや形状を予測する上で初期状態におけるコンシステンシーの把握が必要であると考えられる.

4. まとめ 得られた主な知見は以下のとおりである.①試料作製方法によって粘土が含める水分量およ びクラックの大きさや複雑さが異なる.②スラリー粘土の乾燥収縮における最終的な形状は境界面の影響を 強く受ける.③スラリー粘土の乾燥クラックは内部に生じる大きな間隙が影響する.

【参考文献】1)瀬谷 曜,梅崎健夫,河村 隆,本間清真,小平計美:不飽和スラリー粘土の乾燥収縮特性(その1),土木学 会第73回年次学術講演会,pp.203-204, 2018.