飽和度一定三軸圧縮試験による不飽和マサ土に関する実験的研究

1. はじめに

表層地盤にごく普通に存在する不飽和土は,間隙 に水と空気が混在するため,飽和土と比べ,より複雑 な力学挙動を示す.特に降雨による斜面崩壊は,不飽 和地盤の浸水破壊によるものと考えられており,そ の力学特性の定量的評価が要求されている.本研究 グループでは状態変数として骨格応力と飽和度を用 いた飽和・不飽和土の力学特性を統一的に表現でき る弾塑性構成モデル¹⁾を提案し,本構成モデルの精 度向上に努めてきた.

本稿では, 飽和度一定条件における不飽和土のせ ん断挙動を調べるため, 排気・排水条件下で不飽和三 軸圧縮試験を実施した.

2. 試料概要

試験には 2mm 以下にふるい分けしたマサ土を使 用した. 表-1 にマサ土の材料特性を示す. なお,液 性限界と塑性限界が求められないため, NP (Non-Plastic) と記述した. また,図-1 にマサ土の粒形加積 曲線を示す.

供試体作製には,直径 5.0cm×高さ 11.7cm のモー ルドを用い,間隙比 0.65 を目標に,最適含水比付近

(15%)に調節したマサ土を三層に分け,静的に締め 固める. その後,直径 5.0cm×高さ 10.0cm のモール ドを用いて成型する.

	エ
Liquid limit $w_L(\%)$	NP
Plasticity index $I_{\rm P}(\%)$	NP
Specific gravity $G_{s}(-)$	2.66
Standard Proctor Maximum dry density $\rho_e(Mg/m^3)$	1.85
Standard Proctor Optimum water content wort(%)	13.7

3. 飽和度一定制御

飽和度一定制御は,間隙空気圧一定の状態で,供試体からの排水量を間隙水圧の増減によって調整する Glenら²⁾が提案した手法を採用した.飽和度一定に 制御するための条件式を以下に示す.

$$dV_{\rm w} - S_{\rm r(init.)}dV_{\rm v} = 0 \tag{1}$$

名古屋工業大学	学生会員	С)巳上諒太
名古屋工業大学	非会員	熊曦,	沖野頌悟
名古屋工業大学	正会員	張鋒,	岩井裕正

ここで、 dV_w :間隙水の体積変化、 $S_{r(init.)}dV_v$:初期飽 和度と間隙の体積変化の積である.

三軸圧縮試験では間隙の体積変化 (dV_v) は二重セル方式より計測する.また,間隙水の体積変化 (dV_w) は PVC (Pressure/Volume Controller) で調整することで飽和度一定を保持する.

4. 試験概要

表-2に試験条件,本稿では初期サクション50kPa, 30kPa,10kPaをそれぞれ2ケースずつ実施した.試 験手順は,初めに非排気・非排水状態で基底応力を 20kPa載荷する.排気・排水条件に切り替え,間隙空 気圧を載荷することで目標のサクションを載荷する. 排水量の安定を確認した後,基底応力を50kPaまで 上昇させる.再度,排水量の安定を確認し,飽和度一 定制御に切り替え,0.0025%/minのひずみ速度でせん 断を行う.

衣-2 武俠木什						
Test case	s50-1	s50-2	s30-1	s30-2	s10-1	s10-2
Initial Suction s [kPa]	50.0	50.0	30.0	30.0	10.0	10.0
Mean net stress p ^{net} [kPa]	50.0	50.0	50.0	50.0	50.0	50.0
Drain condition	Drain and vented condition					
Shar condition	$\sigma_3^{\text{net}} = \text{constant}$					
Share rate [%/min]	0.0025					

表-2 試験条件

5. 試験結果と考察

表-3 に供試体の物性値を示す.ここで「供試体作 製時」は初期圧密を開始する時点,「試験開始時」は 全ての圧密が終了し, せん断する前の時点,「試験終 了時」は最後の目標値に到達した時点を意味する.

	供調	式体作費	则時	試験開始時		試験終了時			
case	w_0	e_0	S_{r0}	w_0	e_0	$S_{\rm r0}$	$w_{\rm f}$	e_{f}	Srf
s50-1	15.0	0.611	0.65	11.0	0.558	0.53	11.6	0.586	0.53
s50-2	14.3	0.629	0.61	11.1	0.571	0.52	11.2	0.577	0.52
s30-1	14.8	0.622	0.63	11.4	0.569	0.53	11.6	0.579	0.53
s30-2	14.7	0.608	0.64	11.3	0.536	0.56	11.4	0.541	0.56
s10-1	14.4	0.610	0.63	11.9	0.549	0.57	11.9	0.550	0.57
s10-2	14.3	0.612	0.62	12.7	0.557	0.60	12.6	0.556	0.60

表-3 飽和度一定三軸圧縮試験の供試体物性値

図-2 に三軸圧縮試験における試験結果を示す.図-2(a),表-3 より,せん断中に飽和度一定制御ができていることが確認でき,その飽和度は初期サクションが小さいほど大きい.これは保水性曲線より,サクションが低下すると飽和度が増加するからだと考えられる.図-2(b)より,飽和度が低いケースほど最大軸差応力が大きい傾向がわかる.このことから,初期サク

ションが供試体のせん断強さに影響を与えていると 考えられる.軸差応力は全てのケースで最終的に 200kPa 程度の値をとった.体積ひずみは圧縮から膨 張に転じる.また,飽和度が低いケースほど圧縮から 膨張に転じた後の膨張量が大きい傾向がある.図-2(c)より,体積ひずみと排水量を比べると,圧縮傾向 にある場合は排水,膨張傾向にある場合は吸水した. 図-2(d)より,骨格応力を用いたせん断応力比はどの ケースも1.59 程度に落ち着くことがわかった.

図-2 三軸圧縮試験における試験結果

図-3 にせん断試験中のサクションと間隙水圧の変 化を示す.図-3(a)より,軸ひずみが増加すると,サク ションは低下し,せん断終了時には全てのケースで サクションが,0~20kPaの範囲に落ち着く傾向が確認 できた.このサクションの低下により,全てのケース で軸差応力が200kPa程度に落ち着いたと考えられる. また,図-3(b)から,軸ひずみの増加により,間隙水圧 は増加したことで,サクションが低下したことがわ かる.つまり,供試体の膨張により吸水することで, サクションが低下する傾向が確認できた.

推定した限界状態線である.図-4(a)より,基底応力 で整理した場合の限界状態線の傾きの値は応力経路 によって異なる.一方,図-4(b)より骨格応力で整理 した限界状態線の傾きの値は一定値の1.59であり, 骨格応力で整理した方がより合理的に不飽和土の力 学特性を統一的に表現できることが明らかになっ た.

6. まとめ

本稿では, 飽和度一定の条件下で三軸圧縮試験を 実施し, 不飽和マサ土のせん断挙動を調べた. 以下に 本稿で得られた結果について示す.

飽和度が低いほど最大軸差応力は大きくなること がわかった.初期サクションが供試体のせん断強さ に影響している.また,体積ひずみは,圧縮から膨 張に転じる傾向があり,その膨張量は飽和度が低い ほど大きくなる.体積変化が圧縮の場合は排水,膨 張の場合は吸水の挙動を示した.また,軸ひずみが 増加すると間隙水圧が増加し,サクションは低下す る傾向が確認できた.応力経路を基底応力と骨格応 力で整理した場合,骨格応力を用いた方がより合理 的であることがわかった.

7. 参考文献

1) Zhang, F. and Ikariya, T.: A new model for unsaturated soil using skeleton stress and degree of saturation as state variables, Soils and Foundations, Vol. 51, No.1, pp. 67-81, 2011.

2) Burton, G. J., Pineda, J. A., Sheng, D., Airey, D. W. and Zhang, F. (2015) : Exploring one-dimensional compression of compacted clay under constant degree of saturation paths, *Géotechnique*, 66 (5), 435-440.