アノード親水化および流れによる下水からの生物学的電流生産の促進

名古屋工業大学 学生会員 〇宮崎耕平

1. はじめに

次世代の下水処理方法の一つとして、下水バイオマスを電流に変換し回収する微生物燃料電池(Microbial fuel cell: MFC) (図1)が着目されている.しかし、MFC の出力電力は下水に潜在するバイオマスエネルギーに比べて低く、技術改善が必要である.

MFC の電力出力を決める主たる要因に,アノード における下水有機物の微生物による酸化ならびに電子 伝達反応がある.他の微生物反応と同様に,有機物濃 度が高いほど反応が早くなり MFC の出力電力が高く なる.そのため,都市下水のような有機物濃度の低い 廃水から電力回収を行うには,アノード担持微生物に 如何に有機物を供給できるかが鍵となる.本研究では, アノード担持微生物への有機物供給を促進する方法と して,アノード表面の親水化ならびに反応溶液中の流 れに着目し,これらが下水有機物からの電流生産性に 与える影響を評価した.

図1 MFC 模式図

2. 実験方法

2.1. アノードの親水処理が吸水性および微生物担持 性に与える影響評価

MFC のアノード材料に一般的に用いられる黒鉛フ ェルト (GF) をアノード材料として用いた. アノー ドの親水化の手法には、O₂プラズマ処理を用いた. 親 水性の評価は、以下の式で算出される吸水率により評 価した. 吸収した水の体積は 5×5×0.5cm 角に切り 取った GF を水で満たしたケースに 30 秒浸した後取 り出し、水の質量の減少量を測定することにより求め た.

吸水率(%) =
$$\frac{吸収した水の体積 (cm3)}{黒鉛フェルトの体積 (cm3)} \times 100$$

微生物の植種は、次のようにして行った.下水処理 施設(堀留処理場、愛知)の最初沈殿池からサンプリ ングした活性汚泥を約2倍に濃縮し、 $3\times1\times0.5$ cm 角 に切り取った未処理および O_2 プラズマ処理 GF を 30 名古屋工業大学 正会員 吉田奈央子

分漬け置きした.漬け置き後取り出し,GF が補足し た汚泥微生物の細胞密度を直接検鏡法により計測した.

2.2. 定電圧培養試験

900ml 容積の蓋付きガラス瓶の蓋に,参照電極 (Ag/AgCl),対電極(ϕ 1.0cm のばね状の白金線),集 電体として ϕ 0.30mm の白金線,および未処理または O₂プラズマ処理 GF ($3 \times 8 \times 0.5$ cm角)を設置した(図 2).アノードに,2.1.と同様の方法で汚泥微生物を植種 した後,容器を最初沈殿地流出水で満たした.ポテン ショスタット(北斗電工)を用い,アノードの電圧を 常に+0.2V(vs. Ag/AgCl)に保ち,発生電流を1時間毎 にデータロガーで記録した.

図 2 電気培養装置図

2.3. 一定流速下での定電圧培養試験

流速が下水からの有機物利用の促進に与える影響 を評価するため、2.2 でアノードに未処理 GF を用い た培養容器の中に撹拌子を入れ、100、200、300、400 rpm で撹拌し、撹拌時の電流生産を記録した.各撹拌 強度における流速は、培養装置と同じ瓶を水で満たし、 5g/L カオリン(白陶土)を滴下した際の単位距離の到 達時間から算出した.

3. 実験結果

3.1.親水化が吸水性および微生物担持性に与える影響

図3に、未処理ならびに O_2 プラズマ処理したGFの 吸水試験の結果を示す. 図3より、未処理GFの平均 吸水率は9.4%であったのに対し、 O_2 プラズマ処理GF の平均吸水率は98%と高かったことから O_2 プラズマ 処理によりGF内部へ水が浸透しやすくなることが示 された. つづいて植種微生物の担持性を評価した結果、 植種源である活性汚泥の細胞密度を100とした際の GFの微生物補足率は、未処理GFで67%、 O_2 プラズマ処 マ処理GFで96%であった. これより、 O_2 プラズマ処

図 3 未処理 GF および O₂プラズマ処理 GF の吸水率 (n=3)および水滴下後の吸水の様子

図4 GF が捕捉した汚泥の細胞密度(n=3)

3.2.親水処理が下水からの電流生産に与える影響評価

未処理ならびに O_2 プラズマ処理 GF に活性汚泥を 植種後,下水中で定電圧バッチ培養した際の生産電流 を記録した結果を図5に示す.最初の汚水入れ替えを 行った9日目までの間での平均最大電流密度は未処理 GF で 28±42 μ A/cm³, O_2 プラズマ処理 GF で 57± 8 μ A/cm³であった.よって培養初期では, O_2 プラズマ 処理によって電流生産が促進されることが示された. しかし,定期的に汚水入れ替えを行いながらさらに培 養を継続した結果,未処理ならびに O_2 プラズマ処理 GF 間の電流密度の差は小さくなり,培養開始から21 日目では,未処理 GF で 133±60 μ A/cm³, O_2 プラズマ 処理 GF で 142±33 μ A/cm³となり,同程度になった. これより, O_2 プラズマ処理は,植種から一定期間の電 流の立ち上がり期に電流生産を促進するものの,しば らく経過した後は未処理と差がないことが示された.

図5 未処理ならびに O₂プラズマ処理が下水からの電流生産 に与える影響評価(n=3, ↓は汚水入れ替えを示す)

3.3. 流速が下水からの電流生産に与える影響評価

未処理 GF を用い,異なる撹拌速度下で下水からの 電流生産を比較した結果を図 6 に示す.静置条件で 21 日間培養した後,撹拌速度を段階的にあげ,0~16cm/s の流速(図 6c)を与えた後,再度静置条件に戻し,各 流速で 10-20 分間生産電流を記録した(図 6a).流速 が大きくなるにつれて電流密度も増え,静置条件に戻 したところ,直ちに電流生産も減少した.静置条件で は電流密度 153±77 μ A/cm³であったのに対し,流速 16cm/s で最大電流密度 338±94 μ A/cm³となり,約 2.2 倍に促進された(図 6b).これより,流れが生じるこ とで GF 内部に有機物が供給され,GF 内部に捕捉さ れた微生物による電流生産が促進されたことが示唆さ れた.

結論

- ・GFのO₂プラズマ処理は、GFの水の浸透ならびに 植種微生物の担持を促進し、定電圧培養開始初期の 電流生産を促進する.
- ・GF に担持した微生物の下水からの電流生産は, 流速 の増加に伴い増加し, 16 cm/s で静置時の電流生産の 約2.2 倍の電流生産を示した. これより, GF に担持 した微生物による下水有機物からの電流生産は GF 内部への有機物拡散が律速であり, 流れの制御によ り電流生産を促進できる.