超音波を用いた陸水底泥の層厚および粒径観測手法の検討

豊田高専 環境都市 正会員 〇松本 嘉孝,大林組 石川 智也 豊橋技科大 電気・電子 穂積直裕,建築・都市 正会員 加藤 茂

1. 背景及び目的

近年,ダム湖などの止水域には,上流からの流入 や内部で生産された有機物が堆積し底泥となり,こ れが原因で貯水量の減少や,水底の酸素不足を引き 起こすなどの生態系への悪影響が懸念されている. これまでの底泥量の観測については,ダイバーや柱 状試験体を用いた直接採取法が主であったが,場所 によって時間や費用,労力が課題になっており,測 定方法の簡便化が求められている.

ここで,超音波はその伝搬特性により,短時間で 広域にある対象物の速度や位置の測定が可能である. これまで,海底の地質や層厚の測定に用いられてい るが,底質が数10cmの厚さの陸水底泥を測定する場 合には,測定精度の高い超音波が必要である.

そこで本研究では、止水域における底泥の厚さと 粒径特性を同時に把握できる手法の開発を、連続波 よりも広帯域の情報を持つ波(パルス波)を用いて 目指している.中島ら^[1]のパルスエコー法を参考に、 粒径ごとのエコー特性の把握を透過したエコーと、 反射したエコーに分けて行った結果、底泥とガラス ビーズにおいて、透過したエコー特性から粒径を推 定できることがわかった^[2].今回は、反射エコー特 性を用いた粒径推定実験と、試料層厚の推定実験に ついて記す.

2. 実験方法

2.1 実験試料

本実験は試料に用いる底泥は、愛知県豊田市高町 にある猿投公園ほてい池で採取した.採取後は湖沼 の底泥構成を参考に1000,100,75,63,45µmのふ るいを用いて分画した.加えて、底泥よりも均一性 の高いガラスビーズを用いて、底泥の結果と比較す ることで、再現性の高いエコー特性の把握を行う. ガラスビーズの粒径は1000,400,200,110,70, 50,30µmのものを用いた.

2.2 実験および解析手法

粒径推定実験は、水面から超音波を粒径ごとに堆 積させた試料にあて、その試料から反射されたエコ ーを観測した.実験器具には 6.5 cm×6.5 cm×8.5 cm の角柱を用い、その角柱の底部に試料を詰め、溶媒 を注いだ.えられたエコーはフーリエ変換し、周波 数スペクトルを作成し、各粒子の周波数成分の違い について調べた.

次に、試料層厚の推定実験は、水面から超音波を 堆積している試料に照射し、その試料から反射され たエコーを、測定した時間で記録した.その観測時 間と超音波の移動速度から計算した層厚と、実際に 堆積している試料厚さとを比較した.実験器具には 50ml メスシリンダーを用い、その底部に底質を詰め、 溶媒を注ぎ実験試料とした.試料に用いたガラスビ ーズは、各粒径において 3、6、12cm に分け堆積させ た.底泥については、各粒径において 3cm と無作為 に設定した厚さに分け堆積させた.

粒径推定実験および層厚の推定実験共に,超音波の中心周波数は800kHzであり,送信と受信を単一の 振動子で行った.

結果及び考察

3.1 粒径推定実験

はじめに図-1 は底泥とガラスビーズの両者の実 験から得たエコー画像,図-2 は底泥実験,図-3 はガ ラスビーズ実験における周波数スペクトル中の低周 波帯と高周波帯で測定された成分を示している.な お,低周波帯成分は60kHzで,高周波帯成分は160kHz で記録された値を使用した.この結果より,底泥, ガラスビーズ共に,高,低周波帯で粒径が小さいほ ど反射したエコーは大きいことがわかった.ここで, エコーは対象物の粒子径が波長よりも大きい場合に おいて超音波の進行方向へ発生し,対象物の粒子径 が波長よりも十分に小さい場合において,進行方向 と逆方向へ発生する特性をもっている.そのため, この反射実験で得た本結果は,エコーと粒径との関 係特性を満たしているため,本実験によって概ね各 粒径のエコー特性が把握できたと考える.

3.2 試料層厚の推定実験

表-1は試料層厚の推定実験結果であり,図-4 は各 層厚で堆積している 30μm ガラスビーズから得たエ コー画像である.なお,表中に書かれている試料厚 さは実際に堆積していた厚さ,計算結果は測定時間 から得た試料厚さ,計算誤差は計算した厚さと実際 の厚さの差との観測誤差を示している.

図-4より,設定した厚さによって応答したエコーの観測時間がそれぞれ違うことがわかった.次に表 -1より底泥とガラスビーズの両者の実験において, 各粒径で計算した厚さと実際に堆積している厚さの 誤差を全体で平均すると誤差 5%以内になることが わかった.以上の結果より,水面から底部までの距 離が把握できている場所であれば,水底に堆積して いる試料厚さを推定できることがわかった.

図-3 ガラスビーズの高周波と低周波

4. まとめ

本研究は止水域における底泥の厚さと粒径特性を 同時に推定できる手法の開発を目指すため,底泥と ガラスビーズを用いて粒径推定実験と試料層厚の推 定実験を行った.

はじめに、粒径推定実験では、高周波帯と低周波 帯で粒径が小さいほど反射したエコーは大きいこと がわかった.次に、試料層厚の推定実験では、底泥 とガラスビーズ両者の実験において、すべての粒径 で試料層厚によって応答したエコーの測定時間は違 うことがわかった.また各粒径で算出した厚さと実 際に堆積している厚さの誤差を全体で平均すると誤 差5%以内になることがわかった.以上の実験結果よ り、本研究の手法は底部から得られるエコーの観測 時間がわかる場所であれば、水面からあてた超音波 によって、底部の表層に堆積している底質の粒径と、 底質全体の厚さを推定できた.本研究により底質の 粒径と厚さの情報が同時に推定できる可能性を示し たことは、浄水場や下水処理場など水底までの距離 が明らかな場所での底泥推定に適用が可能である.

参考文献

- [1] 中嶋亮太・加藤茂・穂積直裕・岡部拓巳:超音波 パルスを用いた浮遊砂の粒径推定に関する研究, 土木学会論文集 B2, 70, I_1476-I_1480, (2014)
- [2] Tomonari Ishikawa*, Yoshitaka Matsumoto, Naohiro Hozumi*: Developing The New Method Measuring Thickness and Quality of Bottom Sediments, AIP Conference Proceeding, 1865, 10.1063/1.4993407, (2017)

図-4 試料層厚の推定実験で得たエコー画像

表-1 試料層厚の推定実験結果

	30µm				50µm			70µm			110µт		
ビーズ厚さ(cm)	3.0	6.0	12.0	3.0	6.0	12.0	3.0	6.0	12.0	3.0	6.0	12.0	
測定時間(µm)	286.5	239.5	132.5	283.3	235.3	137.6	286.1	234.1	135.6	287.4	234	133	
計算結果(cm)	3.0	5.9	12.4	3.2	6.2	12.1	3.1	6.2	12.2	3.0	6.2	12.4	
計算誤差	0.00%	1.67%	-3.33%	-6.67%	-3.33%	-0.83%	-3.33%	-3.33%	-1.67%	0.00%	-3.33%	-3.33%	
200µm				400µm			1,000µm			Reference			
ビーズ厚さ(cm)	3.0	6.0	12.0	3.0	6.0	12.0	3.0	6.0	12.0				
測定時間(µm)	286.0	231.0	133.0	284.6	232.0	133.0	283.6	234.0	139.5	50ml メスシリンダー厚さ 20.5cm 測定時間 336.3µs 超音波速度1219.0 m/s			
計算結果(cm)	3.1	6.4	12.4	3.2	6.4	12.4	3.2	6.2	12.0				
計算誤差	-3.33%	-6.67%	-3.33%	-6.67%	-6.67%	-3.33%	-6.67%	-3.33%	0.00%				