ポーラスコンクリートと鉄筋を被覆したコルゲートチューブの付着応力度に関する基礎研究

豊田工業高等専門学校 学生会員 〇熊谷 茉祐 豊田工業高等専門学校 正会員 大畑 卓也 豊田工業高等専門学校 山本 貴正 豊田工業高等専門学校 正会員 河野 伊知郎

1. はじめに

安価かつ蛇腹状で付着の確保が可能なコルゲート チューブ(CT)で鉄筋を覆い,隙間にグラウト材を 充填した補強筋(CT 被覆鉄筋)を,耐久性に劣る脆 性材のポーラスコンクリート(POC)へ適用可能かを 検討することを主目的として,本研究では,この片 側引抜き試験で得られる付着応力度に及ぼす鉄筋へ のCT 被覆および非付着区間の有無の影響を実験的 に検討した。

2. 実験概要

2.1 使用材料

POC およびグラウト材に使用した水は水道水, セ メントは普通ポルトランドセメント(密度:3.15g/ cm³),細骨材は多治見市大畑町産の山砂(表乾密度: 2.55g/cm³,吸水率:1.78%,実積率:65.3%),粗骨 材は瀬戸山の6号砕石(粒径:5-13mm,表乾密度: 2.70 g/cm³,吸水率:0.52%,実積率:57.8%)である。 鉄筋はSDR295・D10(降伏応力度:337N/mm²,引張強さ: 472N/mm²), CT はポリプロピレン製(蛇腹形状,ス リット無,公称内径:19.5mm,公称外形:23.7mm, 公称波長:3.6mm)である。

CT に充填するグラウト材はセメントペースト(配 合強度:70N/mm²,セメント水比:4.0,混和剤使用 量:セメント質量比の 6.0%),POC の結合材はモル タル(セメント水比:4.0,混和剤使用量:セメント 質量比の 0.5%,細骨材使用量:体積比で 50%)であ る。混和剤はポリカルボン酸系高性能減水剤を使用 した。POC の配合設計において,配合空隙率は 20% とし,粗骨材量は,締固めなどによる補正を無視し JIS_A_1104 に準拠して測定した実積率とした。

2.2 供試体作製

片側引抜き供試体は,JSTM_C_2101 に準拠した。 JSTM_C_2101 には,供試体の一辺の長さは鉄筋の公 称直径の6倍と規定されており,本供試体の一辺の 長さは,CTの公称外径の6倍程度である150mmとした。 試験条件を同一とするため,CT被覆なしの供試体の一 辺の長さも150mmとしている。付着長さは鉄筋の公称

図-1 片側引抜き試験の概要

直径の4倍と規定されており,本供試体では,コルゲー トチューブの公称外径の4倍程度である100mmとした。 図-1には,これら試験の概要が示してある。養生は, 材齢7日目まで気中封緘,その後,水中とした。

型枠内への練り上がり POC の詰め込みは,2層に 分けて,突き棒で各層を片側引抜き試験は22回, 標準供試体(ϕ 100x200)は7回で締固めた。型枠内 の鉄筋が移動しないように振動締固めを実施してい ない。

2.3 試験方法

片側引抜き試験において,載荷板と供試体の間に ゴム板(厚さ:5.0mm)を挿入し,付着応力度に及ぼ す供試体表面の凹凸の影響を少なくしている。また, 載荷力は鉄筋に対し毎分49N/mm²程度とした。同一 供試体個数は2である。付着応力度は次式で算出し た。

 $\tau = N/(4\pi D^2)$ (1) ここに、 τ : 付着応力度、N: 載荷力、D: 鉄筋の公称 直径

結合材の材料強度試験は JIS_R_5201, POC の圧縮 強度試験は JIS_A_1108, 空隙率試験は JCI-SP02 に 準拠している。片側引抜き供試体の空隙率は, 測定 が困難であるため, ここでは作製した標準供試体の 空隙率と同等としている。

3. 実験結果

3.1 POC 標準供試体

図-2に、POC標準供試体の圧縮強度(F)と全空

V-023

隙率(P)の関係を示す。図中の曲線は,文献1)の 近似式の結合材強度に,本研究の結合材の圧縮強度 を代入した次式である。

3.2 片側引抜き供試体

図-3に、片側引抜き供試体の最大付着応力度お よび0.002D時付着応力度と各種要因の関係を示す。 図中には最終破壊形状も併せて記してある。

a) CT 被覆の影響

図-3より,非付着区間ありの最終破壊形状,最 大付着応力度および0.002D時付着応力度に及ぼす CT 被覆有無の影響が認められる。CT 被覆なしは鉄 筋引抜き破壊,CT 被覆ありはCT 引抜き破壊であり, CT 被覆なしの最大付着応力度および0.002D時付着 応力度は,CT 被覆ありと比較して低い結果を得た。 CT 被覆なしの補強筋周囲のPOC の充填性が,CT 被 覆ありと比較して低いことが,後者の原因であると 考えられる。

b) 非付着区間の影響

図-3より、CT 被覆ありの最終破壊形状および最 大付着応力度に及ぼす非付着区間有無の影響が認め られる。非付着区間なしは付着割裂破壊,また非付 着区間ありはCT の引抜き破壊であり,非付着区間 なしの最大付着応力度は,CT 被覆ありと比較して低 い結果を得た。

上記について,非付着区間なしは,そのありと比 較して載荷板からの応力が不均一であるため,CTの 引抜き破壊が生じる前に引張応力が引張強度に到達 して付着割裂破壊が生じたと考えられる。一方,非 付着区間ありは載荷板からの応力が均等化してお り,またかぶり厚さが大きいため付着割裂破壊時の 付着応力度が高くなり,かぶり厚さが影響しないCT の引抜き破壊が先行して生じたと推察される。なお, 非付着区間なしの0.002D時付着応力度は,そのあ りと比較して高い。このことについては,研究の現 状では不明であるため,今後の課題となる。

4. おわりに

ポーラスコンクリートと鉄筋の片側引抜き試験

図-3 付着応力度

で得られた付着応力度に及ぼす CT 被覆有無および 非付着区間有無の影響について実験的に検討した。 その結果,次の知見を得た。

- 1) 非付着区間ありかつ CT 被覆なしは,補強筋周 囲の POC の充填性が低いため,CT 被覆ありと比 較して最大付着応力度が低いと考えられる。
- 2) CT 被覆ありかつ非付着区間なしは、そのありと 比較して載荷板からの応力が不均一であるため、 非付着区間ありと比較して最大付着応力度が低い と考えられる。

謝辞

本稿の研究成果は,2017年度公益財団法人内藤 科学技術振興財団研究助成金の支援による。また 本実験を遂行するにあたり,竹本油脂株式会社の ご助力を得た。

参考文献

 湯浅幸久,畑中重光,三島直生,前川明弘,宮本高秀:ポーラスコンクリートの振動締固めに 関する実験的研究,日本建築学会構造系論文集, No. 552, pp. 37-44, 2002.2